# **EXECUTIVE SUMMARY**

# Introduction

In cooperation with the National Automated Highway System Consortium (NAHSC), case studies are being conducted on existing transportation corridors to determine the feasibility of AHS. Initial activities by the NAHSC have focused on urbanized areas. However, a need exists to investigate the applicability of advanced transportation technology and AHS in rural settings. AHS applications have primarily focused on problems associated with urban traffic congestion; secondary considerations have related to safety, air quality and energy conservation. These areas are also of concern to the rural transportation provider; however, the primary focus of the rural transportation provider is improved safety.

The Greater Yellowstone Rural Intelligent Transportation Systems (GYRITS) corridor comprises a loop roadway system traversing through Wyoming, Yellowstone National Park (YNP) and Grand Teton National Park, connecting Bozeman, Montana with Idaho Falls, Idaho. The combination of varied, often undesirable driving conditions with wildlife, unfamiliar drivers, a diverse traffic stream and a lack of communication infrastructure indicates an immediate and growing need for increased focus on safety. The problems experienced in the GYRITS corridor are common to many rural environments. Hence, it is an ideal location to showcase field operational demonstrations of advanced technologies.

The intent of this study was to recommend applications and consider implications of Automated Highway Systems (AHS) in a rural environment. This study focused on developing an applicable AHS for the GYRITS corridor that would ultimately increase safety and improve operation.



Figure i - Project Methodology

# **Rural AHS Vision**

The system conceived for this project and used in the benefit-cost analysis assumes four incremental service levels: (1) Spot Application: locations where accidents are statistically over-represented will be implemented with technology to warning the driver of hazards via the infrastructure and dynamic messages; (2) Information Assistance: dangers warnings will be relayed to the driver via the vehicle; (3) Control Assistance: the vehicle warnings will be relayed to the driver and in the event the driver does not respond the vehicle will temporally assume control; and (4) Full Automation: in this instance the vehicle is fully autonomous.

Information Assistance, Control Assistance and Full Automation have three primary functions that assist with collision avoidance. These three functions are (1) longitudinal collision warning/guidance, (2) lateral collision warning/guidance and (3) intersection collision warning.

## **Institutional Issues**

Challenges that may impede the deployment of AHS are institutional in nature. These include legal implications, public acceptance, procurement procedures, funding, operation and maintenance responsibility, privacy issues, environmental impacts, societal issues and jurisdictional coordination. Some public agencies are hesitant to get involved; the envisioned AHS system may be perceived as too futuristic. This is especially true in rural environments where agencies typically mitigate roadway problems using "low-tech, low-risk" solutions. Involving the rural transportation providers early in the planning, testing and evaluation phases will help promote the effectiveness of AHS, develop champions and achieve user buy-in. An incremental deployment strategy will help demonstrate early, visible, quantifiable safety benefits for potential users.

# **Accident Analysis**

Accident rates were determined for each half-mile segment using a floating referencing system. Specifically, rates were determined on a half-mile basis, advancing along the route every tenthmile. Additionally, severity rates were determined for each floating half-mile segment. Based on these rates, potential atypical accident locations were chosen for further study. These locations were analyzed to determine what, if any, accident trend(s) existed. Segments exhibiting trends were thought to have the best chance of maximizing benefits from AHS applications (see Table i).

Accident data, collected from Idaho, Montana, Wyoming and Yellowstone National Park, was standardized and assimilated to allow for spatial representation using Geographic Information Systems (GIS). Accident data was depicted both at spot locations and continuously along the roadway depending on the frequency and characteristics of the accidents. Before examining the accidents to determine geographic areas of focus, the corridor was separated into 18 major segments based on: changes in geometric alignment, city limits, mountainous areas, and state lines. Although state lines were assumed to be transparent, segments were broken along state lines for ease of analysis. The segment types included rural-flat, rural-mountainous, urban

| Milepost<br>Range                    | Total<br>Accidents | Total<br>Trend | Milepost<br>Range | Total<br>Accidents | Total<br>Trend |
|--------------------------------------|--------------------|----------------|-------------------|--------------------|----------------|
| Montana U.S. Hig                     | ghway 191          |                |                   |                    |                |
| 9.900-10.011                         | 18                 | 13             | 10.000-11.000     | 20                 | 17             |
| 28.000-28.900                        | 13                 | 9              | 59.000-60.000     | 11                 | 8              |
| 61.000-61.400                        | 12                 | 7              |                   |                    |                |
| Montana U.S. Hig                     | ghway 20           |                |                   |                    |                |
| 1.000-2.000                          | 10                 | 6              | 8.619-8.946       | 11                 | 7              |
| Idaho U.S. Highw                     | vay 20             |                |                   |                    |                |
| 311.000-312.000                      | 22                 | 14             | 317.000-318.000   | 42                 | 29             |
| 328.000-329.000                      | 14                 | 6              | 338.000-339.000   | 17                 | 11             |
| 326.000                              | 12                 | 4              | 405.000-406.000   | 8                  | 6              |
| Idaho U.S. Highw                     | vay 26             |                |                   |                    |                |
| 335.000-336.000                      | 23                 | 12             | 336.000-337.000   | 34                 | 24             |
| 338.000-339.000                      | 16                 | 11             |                   |                    |                |
| Wyoming U.S. Hi                      | ighway 89          |                |                   |                    |                |
| 160.000-161.000                      | 11                 | 8              | 167.000-168.000   | 12                 | 5              |
| 185.000-186.000                      | 18                 | 11             | 189.000-190.000   | 12                 | 6              |
| 184.400-184.600                      | 8                  | 8              | 188.000-188.690   | 6                  | 6              |
| 127.000-128.000                      | 22                 | 16             |                   |                    |                |
| Yellowstone National Park Highway 89 |                    |                |                   |                    |                |
| 21.034-21.834                        | 18                 | 9              | 21.334-21.834     | 5                  | 5              |
| 43 122-43 672                        | 9                  | 5              | 66 180-67 780     | 20                 | 9              |

#### **Table i - Atypical Spot Locations**

(within city limits), suburban (directly outside city limits until change in cross section), and semi-mountainous (only in Yellowstone National Park). The number of accidents for each accident trend, identified previously for half-mile locations, was determined for each of the 18 major segments. A geographic area was identified for focus if the area possessed two of the three following criteria: (1) a high percentage of the accidents in the area had a common trend; (2) a high number of the accidents in the area had the same common trend; and/or (3) half-mile atypical locations existed with the same trend (see Table ii).

In addition to considering spot and regional locations for the entire accident sample, two smaller groups were separated out for further analysis: (1) commercial vehicles and (2) in-state/out-of-

| Table ii – A | Atypical | Regional | <b>Segments</b> |
|--------------|----------|----------|-----------------|
|              | • •      | 0        | 0               |

| Milepost<br>Range                | Road<br>Type               | Total<br>Accidents |  |  |
|----------------------------------|----------------------------|--------------------|--|--|
| Yellowstone Park U.S. Highway 89 |                            |                    |  |  |
| 0.000-93.446                     | Park                       | 426                |  |  |
| Wyoming U.S. Hi                  | ghway 26                   |                    |  |  |
| 0.000-2.370                      | Mountainous                | 7                  |  |  |
| Montana and Yel                  | lowstone Park U.S. Highway | 7 191              |  |  |
| 0.000-10.835                     | Level                      | 88                 |  |  |
| 10.836-66.826                    | Mountainous                | 276                |  |  |
| 66.827-81.903                    | Level                      | 98                 |  |  |
| Idaho U.S. Highw                 | vay 20                     |                    |  |  |
| 308.717-353.050                  | Level Suburban             | 271                |  |  |
| 353.051-401.300                  | Level                      | 117                |  |  |
| 401.301-406.300                  | Mountainous                | 18                 |  |  |
| Montana U.S. Highway 20          |                            |                    |  |  |
| 0.000-3.000                      | Level                      | 27                 |  |  |
| 3.001-9.397                      | Mountainous                | 39                 |  |  |
| Idaho U.S. Highway 26            |                            |                    |  |  |
| 335.255-338.069                  | Level Suburban             | 64                 |  |  |
| 338.070-375.538                  | Level                      | 134                |  |  |
| 375.539-402.500                  | Mountainous                | 63                 |  |  |
| Montana U.S. Highway 89          |                            |                    |  |  |
| 0.000-51.812                     | Level                      | 112                |  |  |
| 51.813-53.068                    | Level Suburban             | 44                 |  |  |
| Wyoming U.S. Highway 89          |                            |                    |  |  |
| 118.32-152.090                   | Mountainous                | 304                |  |  |
| 155.211-165.000                  | Level                      | 86                 |  |  |
| 165.001-211.620                  | Mountainous                | 245                |  |  |

| Accident<br>Type     | Total<br>Accidents | Accident Rate<br>(R/MVMT) | National<br>Average | Difference |
|----------------------|--------------------|---------------------------|---------------------|------------|
| Property Damage Only | 54                 | 97.39                     | 75.00               | +22.39     |
| Injury Accidents     | 69                 | 40.73                     | 47.00               | -6.27      |
| Fatal Accidents      | 8                  | 4.72                      | 2.50                | +2.22      |

#### Table iii - Heavy Vehicle Accident Rates

state drivers. Targeting smaller groups within this sample may actually help to accelerate NAHSC's near-term deployment goals.

Heavy vehicles were involved in approximately 10 percent of all accidents within the corridor, resulting in 28 percent of the fatality accidents and five percent of injury and property damage only accidents (see Table iii). Nationally, heavy vehicles accounted for 12 percent of all traffic fatalities and three percent of all accidents resulting in injury and property damage only. [10] The aforementioned statistics, which indicate that heavy vehicle accidents in the GYRITS corridor exceed the national averages, support the notion that a safety problem exists related to commercial vehicles in the corridor. However, the low frequency of accidents made it statistically difficult to sort heavy vehicle related accidents into trends. Instead, heavy vehicle accident rates appeared to be distributed randomly through mountainous and flat regions; indicating driver error may be the primary problem, while alignment and terrain are secondary contributors.

Traveler origin information was examined to determine if accidents within the corridor were a product of unfamiliar out-of-state travelers or local residents. It was hypothesized that this information would be helpful in determining target groups for early operational testing and evaluation. Tables iv and v describe the differences among in-state and out-of-state crash involvement rates for each geographic area of focus. The accident data from Idaho and Wyoming allowed for the determination of the causing party. Hence, each accident could be traced to a single in-state or out-of-state party; the proportion of in-state travelers and out-of-state travelers involved in an accident summed to one. Montana's accident data did not reflect causing party information but rather accident involvement. Hence, the proportion of in-state travelers and out-of-state travelers summed to greater than one.

## **Benefit-cost Analysis**

Table vi presents realistic benefit-cost ratios based on predicted vehicle fleet market penetration as indicated in the deployment vision. Note the importance of vehicle fleet penetration and AHS service level on benefit-cost ratios for full-scale regional deployment. Many regions were deemed inappropriate for the installation of AHS infrastructure due to low benefit-cost ratios, likely resulting from the relatively low vehicle fleet market penetration. Lower accident

| State   | Route | Segment                | % In-state | % Out-of-state |
|---------|-------|------------------------|------------|----------------|
| Wyoming | 89    | total corridor section | 51         | 49             |
|         | 89    | 158.82 to 204.85       | 41         | 59             |
| Idaho   | 20    | total corridor section | 68         | 32             |
|         | 20    | 308.717 to 353.05      | 84         | 16             |
|         | 20    | 353.06 to 406.30       | 37         | 63             |
|         | 26    | total corridor section | 73         | 27             |

#### Table iv - Origin of Vehicle Causing Accident

#### Table v - Origin of Vehicles Involved in Accident

| State   | Route | Segment                | % In-state | % Out-of-state |
|---------|-------|------------------------|------------|----------------|
| Montana | 20    | total corridor section | 65         | 94             |
|         | 89    | total corridor section | 123        | 36             |
|         | 191   | total corridor section | 71         | 48             |
|         | 191   | 0 to 10.493            | 49         | 56             |
|         | 191   | 10.494 to 81.903       | 60         | 36             |

reduction factors also resulted in lower benefit-cost ratios for the Information Assistance service level.

## **Next Steps**

This section recommends several areas for possible early field operational testing (FOT)with low-level AHS technology. The intent of the recommended FOTs is to provide the driver with more information and more time to react. It is hypothesized that this additional information and time will help the driver avoid many collisions. Through the benefit-cost analysis, sites with the greatest potential were selected for AHS technology deployment in continuing efforts. The candidate sites include:

#### Friction/Ice Detection and Warning System

• Montana U.S. Highway 191, milepost 9.900 to 10.011 and 10.000 to 11.000;

|                                           | Benefit-cost Ratios                                         |                                                                |  |  |  |
|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Location                                  | Information Assistance<br>20% penetration<br>after 10 years | <b>Control Assistance</b><br>50% penetration<br>after 20 years |  |  |  |
| Montana U.S. Highway                      | Montana U.S. Highway 191                                    |                                                                |  |  |  |
| MP 0.000 - 10.835                         | 3:1                                                         | 23:1                                                           |  |  |  |
| MP 10.836 - 66.826                        | 2:1                                                         | 17:1                                                           |  |  |  |
| MP 66.827 - 81.903                        | 4:1                                                         | 34:1                                                           |  |  |  |
| Montana U.S. Highway                      | 89                                                          |                                                                |  |  |  |
| MP 0.000 - 51.812                         | 0.007:1                                                     | 0.07:1                                                         |  |  |  |
| MP 51.813 - 53.068                        | 5:1                                                         | 37:1                                                           |  |  |  |
| Montana U.S. Highway                      | Montana U.S. Highway 20                                     |                                                                |  |  |  |
| MP 0.000 – 3.000                          | 2:1                                                         | 14:1                                                           |  |  |  |
| MP 3.001 – 9.397                          | 0.02:1                                                      | 0.2:1                                                          |  |  |  |
| Idaho U.S. Highway 20                     |                                                             |                                                                |  |  |  |
| MP 308.717 – 353.050                      | 7:1                                                         | 36:1                                                           |  |  |  |
| MP 353.051 – 401.300                      | 3:1                                                         | 32:1                                                           |  |  |  |
| MP 401.301 – 406.300                      | 0.7:1                                                       | 5:1                                                            |  |  |  |
| Idaho U.S. Highway 26                     |                                                             |                                                                |  |  |  |
| MP 335.255 – 338.069                      | 20:1                                                        | 137:1                                                          |  |  |  |
| MP 338.070 – 375.538                      | 2:1                                                         | 17:1                                                           |  |  |  |
| MP 375.539 - 402.500                      | 1:1                                                         | 10:1                                                           |  |  |  |
| Wyoming U.S. Highway 26                   |                                                             |                                                                |  |  |  |
| MP 0.000 – 2.370                          | 0.2:1                                                       | 2:1                                                            |  |  |  |
| Wyoming U.S. Highway 89                   |                                                             |                                                                |  |  |  |
| MP 118.320 – 152.090                      | 4:1                                                         | 34:1                                                           |  |  |  |
| MP 155.211 – 165.000                      | 4:1                                                         | 36:1                                                           |  |  |  |
| MP 165.000 – 211.620                      | 1:1                                                         | 9:1                                                            |  |  |  |
| Yellowstone National Park U.S. Highway 89 |                                                             |                                                                |  |  |  |
| MP 0.000 – 93.446                         | 1:1                                                         | 9:1                                                            |  |  |  |

Table vi - Benefit-cost Ratio Based on Deployment Vision

#### **Intersection Crossing Detection**

- Idaho U.S. Highway 26, milepost 336.000 to 337.000;
- Idaho U.S. Highway 20, milepost 317.000 to 318.000 and 311.000 to 312.000;

#### **Animal-Vehicle Collision Avoidance**

• Wyoming U.S. Highway 89, milepost 160.000 to 161.000 and 189.000 to 190.000;

#### Horizontal Curve Speed Advisory

• Wyoming U.S. Highway 89, milepost 127.000 to 128.000.

These sites were estimated to have the greatest potential for improving safety in the GYRITS corridor through the deployment of AHS. However, before any of the above sites are designated as FOTs, further investigation of the police accident records, the site, and the transportation providers' perspectives needs to occur.