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DISCLAIMER 

The opinions, findings and conclusions expressed in this publication are those of the authors and 
not necessarily those of the California Department of Transportation, the U.S. Department of 
Transportation or Montana State University.  

Alternative accessible formats of this document will be provided upon request. Persons with 
disabilities who need an alternative accessible format of this information, or who require some 
other reasonable accommodation to participate, should contact Kate Heidkamp, Assistant 
Director for Communications and Information Systems, Western Transportation Institute, 
Montana State University, PO Box 174250, Bozeman, MT 59717-4250, telephone number 406-
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1. INTRODUCTION 

There has been a substantial increase in reconstruction and rehabilitation activities on urban and 
rural highways in recent years. Work zones are a necessary and relatively common occurrence 
on rural highways in order to preserve and improve the transportation system. The frequency of 
maintenance activities and the potential severity of work zone crashes have intensified the 
importance of safe and efficient handling of traffic in work zones. 

Recent years have also seen the emergence and mainstreaming of intelligent transportation 
systems (ITS). ITS uses advanced computer, communications and electronics technologies to 
save time, lives and money on the transportation system. Many transportation agencies have 
been using ITS technologies to address transportation challenges (including those related to work 
zones) in or near urban areas. There has been less attention devoted to how ITS can help address 
challenges in rural areas. Stakeholders in California and Oregon, working in partnership with the 
respective state departments of transportation and in concert with the Western Transportation 
Institute (WTI) at Montana State University, have been researching and demonstrating the 
application of ITS in a rural context through the Rural California/Oregon Advanced 
Transportation Systems (COATS) Showcase project.  

As a part of the COATS Showcase effort, WTI researchers considered how ITS technologies 
could be used in rural highway work zones. The California Department of Transportation 
(Caltrans) Division of Research and Innovation provided funding for such an investigation. The 
project is consistent with several objectives adopted in the COATS ITS Strategic Deployment 
Plan (1): 

• Objective 1.2: Provide systems that advise regional transportation system users of slow-
moving vehicles, obstructions and road and weather conditions. 

• Objective 1.3: Provide systems that advise unfamiliar motorists of alignment and speed 
conditions, tourist attractions, services, construction, weather, and the ability to request 
assistance.  

• Objective 1.5: Reduce the severity of vehicle accidents and their related fatality rates 
through improved notification and response times. 

This report summarizes the findings of this research project, a project which eventually focused 
on designing and testing a specific ITS application: providing real-time delay information to 
motorists in a rural two-lane undivided highway work zone with a lane closure (i.e. a pilot car-
controlled work zone). 

Chapter 2 provides the background of this project along with the context of this study in relation 
to current practices. Chapter 3 lists user requirements for the proposed ITS system. Chapter 4 
describes the methodology used in evaluating the feasibility of such a system and in developing a 
proof-of-concept prototype. Chapter 5 provides background on the equipment and technology 
used in the proof-of-concept system and summarizes the associated challenges. Chapter 6 
presents background for delay estimation and computation and details regarding several 
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prospective algorithms. Chapter 7 summarizes prospective communication technologies for this 
system, and describes testing and analysis conducted to evaluate these technologies. Chapter 8 
provides a summary of the research conducted in this project and presents recommendations for 
subsequent research. 
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2. BACKGROUND AND PROBLEM DESCRIPTION 

ITS technologies may be applied to work zones in an attempt to address a variety of challenges. 
Because of existing work zone-related research and due to project budgetary constraints, the 
research project focused on applications that are specifically rural and for which little research 
has been conducted. 

This chapter provides background on some of the major issues associated with work zones, to 
show how the research team selected a specific application on which to focus. First, an overview 
of work zone challenges is presented. Next, the results of a literature review and a survey of state 
transportation agencies on the use of ITS applications in work zones are presented and 
summarized. This is followed by a review of this research project’s history, to show how the 
decision was made to focus on a specific application. The chapter closes with discussion about 
the vision for this specific application. 

The initial literature review of applicable ITS applications suggested that a traveler information 
system for a two-lane rural highway work zone system was the most promising application that 
met the overall goals of Caltrans for managing rural work zones. This chapter expands on the 
specific area of en-route traveler information for a two-lane rural highway work zone. The 
research team worked closely with the Caltrans personnel to define the user requirements of this 
system. 

2.1. Overview of Work Zone Transportation Challenges 

As stated in Chapter 1, there has been an increase in highway work zone activities in recent 
years, reflecting the needs to maintain the existing roadway infrastructure while providing 
expansion for increases in highway travel demand. Moreover, work zones are becoming more 
commonly recognized as a regular aspect of the highway system that, though the locations may 
change, will never go away. Though they are common features of the highway system, work 
zones introduce discontinuities into the transportation system with reductions in the number of 
lanes or lane width available for vehicles, detours, delays, road closures and similar aspects. 

There are several challenges that emerge from work zones, which are noted briefly for the 
purposes of establishing the background for this project. Additional information is available from 
the Federal Highway Administration’s (FHWA’s) Work Zone Safety and Mobility Program (2) 
or the National Work Zone Safety Information Clearinghouse (3). 

2.1.1. Safety 

Improving work zone safety has become a high priority among state transportation agencies. The 
U.S. Department of Transportation has stated its goal of significantly reducing the number of 
fatalities per year from its current level of about 42,000, and has instituted a National Highway 
Work Zone Safety Program as one means toward accomplishing that goal. 

Improving work zone safety can involve numerous approaches. Education approaches can use a 
variety of outlets (e.g. advanced signage, web pages for highway construction projects) to inform 
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motorists about the existence of work zones and tips for safely driving through them. 
Engineering approaches seek to design the elements of the work zone to protect worker and 
motorist safety by fostering safe separation between moving traffic and workers, adding safety 
appurtenances to protect the perimeter of the work zone, and providing adequate space for 
motorists to adjust travel speed or change lanes before passing by the work area. Enforcement 
approaches can be used to ensure that vehicles comply with work zone signage, especially in 
reducing speeds. 

2.1.2. Delay 

Travel delay from congestion is recognized as a major and growing problem across the country. 
Congestion may be either recurrent, such as due to an excess of vehicles trying to use a road, or 
nonrecurrent, such as due to accidents, weather or work zones. Congestion has significant 
economic costs - $63 billion in urban areas in 2003 alone (4) – as well as costs related to 
inconvenience.  

Work zone-related delay may be reduced through a variety of means. Public information in 
advance of and during a construction project can encourage drivers to use alternate routes or 
alternative transportation. Changes in construction planning – how projects are staged, the use of 
night-time construction – can also help. Despite these improvements, work zones will likely 
result in delays. 

In some work zones, especially in rural areas where the road geometry is narrow and alternative 
routes are sparse, delay is unavoidable. These delays can be especially long on rural two-lane 
highways where traffic flow alternates directions through the use of a pilot car. These delays can 
increase driver stress and frustration, potentially affecting driver behavior within and after the 
work zone, which could impact the safety of workers and other motorists.  

One way of reducing driver frustration is to provide real-time information on the delays that 
motorists can expect as they approach a work zone. This information could take the form of a 
countdown timer, so that motorists know, as they arrive at the work zone, about how long they 
would need to wait before being able to proceed through.  

2.2. Summary of Literature and State DOT Surveys 

At the start of this project, the research team conducted a literature review on the use of ITS 
applications in work zones, and also surveyed transportation agencies regarding their use of ITS 
in work zones. The goal of this information-gathering was to help direct the types of activities on 
which the research team would focus in this project. 

2.2.1. Literature Review 

The existing documented research on traffic control around work zones indicates that travelers 
would like to have information on delays, alternate routes, and similar information in real time. 
There are also numerous studies on ITS applications for work zones. In general, the studies 
found that ITS in work zones help improve the traffic movement, reduce driver frustration, 
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reduce traffic congestion around work zones, and reduce the number of accidents occurring at 
work zones among other benefits. For example, a simulation study using an ITS Deployment 
Analysis System (IDAS) found that full deployment of ITS in work zones in the Cincinnati area 
will result in a benefit-cost ratio of about 11.8 or higher (5). 

There has also been research about what elements are vital for ITS applications to be successful. 
FHWA conducted a cross-cutting study of test ITS applications and identified several factors 
which contribute to the success of ITS applications at work zones, including reliable 
communication methods, involvement of other stakeholders, and allowing start-up time for the 
system (6) .  

However, the literature found few documented examples of ITS applications that are applicable 
for low-volume two-lane rural highways, where the fluctuation in the traffic can be high and 
delay times for certain time periods of a day can be relatively high. This suggests that further 
research is required to establish better understanding of pilot car operated work zones, especially 
on rural two-lane highways. More details on this literature review are provided in the Technical 
Memorandum 1 (7). 

2.2.2. Summary of Agency Surveys 

Recognizing that many transportation agencies may implement ITS applications in work zones 
which are not documented nationally, the research team sought to identify the state-of-the-
practice through conducting surveys of agency personnel. As part of documenting the current 
practices in traffic management in and around work zones, an online survey was created and sent 
to DOT personnel in all 50 states. Thirty-seven respondents from 29 agencies responded to the 
survey. Ninety-two percent of respondents indicated that their agency had used ITS to manage 
the traffic in and around construction/maintenance work zones.  

Respondents were asked to select all the ITS systems used in work zones by their agencies from 
a list of seventeen commonly used ITS systems. Respondents could add other ITS systems if 
needed. Changeable message signs (CMS) / dynamic message signs (DMS) were the most 
commonly used ITS technology in work zones with 89 percent of respondents indicating some 
level of usage. Closed-circuit television (CCTV) cameras and traveler information websites were 
the next most commonly used technologies; more than 60 percent of respondents reported using 
each of these two systems. 

The conclusions of this online survey indicate that there is broad interest in and usage of 
technologies to improve traveler information for work zones, such as using CMS or traveler 
information websites. This is likely influencing driver expectations, so it should be expected that 
improvements in work zone traveler information accuracy and timeliness will be increasingly 
demanded by the traveling public. This might eventually include integrating field-based traveler 
information on delays (en-route) into Internet sites for pre-trip planning purposes. 

Since work zone fatalities continue to increase in California, application of technologies 
designed to protect worker and driver safety in work zones may have some benefits. However, 
the relatively low level of respondent satisfaction with these technologies suggests that new 
approaches should be tested and evaluated. 
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Many respondent comments indicate that certain ITS technologies are becoming standard 
practice for state departments of transportation in their work zones. This indicates that these ITS 
technologies can add value to how work zones are conducted in general. This also suggests that 
transportation agencies are interested in exploring how innovative ITS applications may continue 
to offer significant benefits to work zone managers and the traveling public.  

On the other hand, while there are some standard practices, it is clear that these practices are not 
well-documented for all states. A state that is interested in using ITS applications for work zones 
should begin with limited demonstrations of these technologies and move toward standardized 
practices, including criteria for deployment, location of field elements, message sets, and other 
factors. 

2.3. Project Background 

From 1998 until 2001, the California and Oregon Departments of Transportation (Caltrans and 
ODOT, respectively), with the support of the Western Transportation Institute (WTI) at Montana 
State University, led the Rural California/Oregon Advanced Transportation Systems (COATS) 
project. The purpose of the COATS effort was to encourage regional, public and private sector 
cooperation between California and Oregon organizations to better facilitate the planning and 
implementation of intelligent transportation systems (ITS) in a rural bi-state area extending 
between Eugene, Oregon and Redding, California. The purposes of the COATS project were: 

• to identify the transportation and information needs within the bi-state study area; 
• to determine ITS solutions that would be beneficial, cost-effective, and implementable 

for demonstration within the study area; 
• to identify, design, demonstrate and evaluate initial, small-scale “early-winner” 

projects/systems; and 
• to develop a model deployment and evaluation plan that describes a strategic approach 

for implementing rural ITS strategies on a larger scale. 

COATS Showcase, a subsequent project to COATS, provided additional funding to demonstrate 
and evaluate ITS technologies in rural areas. COATS Showcase included a number of 
interrelated efforts which sought to provide data to guide implementation of ITS, and to evaluate 
the effectiveness of existing ITS deployments.  

With the endorsement of the COATS Steering Committee, WTI initiated a research project to 
examine the applicability of ITS in rural work zones. Based on initial guidance from the project 
evaluation team, the decision was made to focus on two technology applications: a late-merge 
application to reduce queue lengths in work zones on multi-lane highways (e.g. interstates) with 
lane closures, and a project to promote improved real-time delay estimation at two-lane rural 
highway work zones involving lane closures (i.e. pilot-car controlled). Over the course of the 
project, project evaluation team members encouraged the research team to focus on the second 
application, which agrees with the findings of the literature review and agency surveys described 
in the previous section.  

Significant development work for this application occurred between 2002 and early 2004, when 
the research team relied on in-house expertise in Caltrans Division of Research and Innovation to 
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advance and research alternative concepts. Changes in staffing at DRI, due to other emerging 
priorities, resulted in a loss of ITS design support for this system, shelving the project. The 
project was resumed in early 2006 through the use of in-house expertise at WTI. 

2.4. Methodology for Application Description 

This section provides more detail of the application that was developed through this project. 

2.4.1. Statement of Need 

Work zones can impose inconvenience on travelers through unexpected delay. These delays can 
be long and highly irregular in rural areas on two-lane highways where traffic flow alternates 
directions through the use of a pilot car. These delays can increase driver stress and frustration, 
potentially affecting driver behavior within and after the work zone, which could impact the 
safety of workers and other motorists.  

There are numerous ITS applications that have been tested and successfully used in work zones 
in urban and rural settings, such as applications in traffic control and real-time centralized traffic 
management. There has not been a real-time traveler information system that has been 
specifically used in a work zone on a two-lane rural highway with one-lane closure where traffic 
is typically managed with one or more pilot cars. 

The initial literature review suggested that rural travelers as well as urban travelers would like 
more real-time information to facilitate their travel through work zones or alternate routes. This 
project envisioned the development of a robust, easy-to-use, real-time traveler information 
system for work zones on two-lane rural highways with one-lane closures. This system will 
provide real-time estimated delay to the waiting vehicles at both ends of the closure during the 
hours of pilot car operations. 

2.4.2. Project Objective and Approach 

The primary objective of this COATS Showcase project led by WTI is to identify different 
options for ITS applications that can potentially be used in work zone traffic control in rural 
areas. Based on this research, this project sought to develop a prototype demonstration system 
for real-time delay estimation and en-route information dissemination for a two-lane highway 
work zone with a lane closure where a pilot car manages the traffic. 

As mentioned in section 2.3, there was only about three months available for the development of 
a system to fulfill this application. This led the research team to focus on developing a prototype 
system that could be tested in a controlled fashion in laboratory conditions. The primary purpose 
of this prototype system is to serve as a proof-of-concept and demonstrate that this system is 
feasible. These tests were also used for identifying ways to improve the system to make it 
deployable with further research and testing. 

This prototype system is envisioned to use off-the-shelf components that conform to acceptable 
ITS industry standards and cater to the primary user requirements in the system input and system 
communication functional areas. 
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The methodology used on this project follows the systems engineering model. A system concept 
is formed to describe the operation and components of the prospective system. High-level 
requirements are elicited to formalize the parameters within which the system must operate. 
Design alternatives are considered and formalized to specify the system so that it meets 
requirements. A proof-of-concept version of the system is then developed to test technologies 
and algorithms and the results are then used to evaluate the viability of such a system. If the 
results are promising, subsequent development would be conducted to develop future versions of 
the system for field testing and, if successful, production deployment. Each development phase 
can be considered part of an iterative, or spiral, process that helps to identify and mitigate risk as 
early as possible, and to accurately capture user requirements. 

2.5. System Concept: Rural Two-Lane Highway Work Zone Delay 
Estimation System 

The system was envisioned to have the following components and capabilities: 

• One or more signs positioned near the ends of the work zone, each capable of displaying 
delay estimation messages. 

• Controllers at or near each sign, each capable of changing the message on the sign. 
• Receivers at or near each controller, each capable of receiving data messages from the 

pilot car. 
• A data logger in the pilot car, capable of determining and logging the duration in which 

the pilot car is in various states: i.e., waiting at each end point, or traveling between each 
end point. 

• A transmitter in the pilot car, capable of transmitting data messages to the sign 
controllers. 

• Programmable logic at the sign controller and/or in the pilot car to calculate delay 
estimates. 

The system would use these components and capabilities to calculate, transmit, and display delay 
estimates to drivers waiting at each end of the work zone. 
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3. USER REQUIREMENTS 

After developing a vision for the application, the next step in the systems engineering process is 
to develop user requirements that can guide system design. User requirements for a real-time 
traveler information system were developed in consultation with Caltrans personnel, to reflect 
Caltrans practice in managing work zones. These practices include the following: 

• Caltrans has adopted a policy to keep the wait times not to exceed 15 minutes.  

• All vehicles that have come to a stop before the pilot car is ready to leave for the other 
end are allowed by flaggers to go through the work zone before they close it off. 

• Pilot cars are instructed to follow the posted speed limit as closely as possible. 

The user requirements are divided into functional areas for the ease of correlation with the 
methodology and other sections of this report. The prototype system was designed to 
accommodate most of these requirements with further research and testing. 

3.1. Delay Estimation and Display Requirements 

The overall system purpose is to accurately measure the stopped delay for each end of the pilot 
car managed traffic through a two-lane rural highway, and to display this information to 
motorists to reduce motorist frustration. Requirements governing information display include the 
following: 

1. The system should be able to display one of the following three time measurements 
a. Time before the first car in the queue starts to move through the work zone 
b. Time for the first car in the queue to get to the other end of the work zone 
c. Delay due to the work zone (i.e. the difference in travel times between any two 

points encompassing the work zone with and without the work zone) 
2. The accuracy of the displayed time measurement (i.e. either total delay or stopped delay) 

should be within the range of ±2 minutes. New policies for stabilizing the cycle times of 
the pilot car operation may also be used to meet this requirement. 

3. Display messages must be able to be defined by the system user. Users are the district 
maintenance personnel corresponding to the highway location of the work zone. 

4. To the extent possible, the displayed time measurement should be updated every two 
minutes to reflect the time measurement with respect to that instant in time.  

5. The displayed time measurement shall be rounded up to the nearest whole number of 
minutes. 

3.2. Placement Requirements 

The system is to display estimates of delay at both ends of the work zone. The following general 
requirements govern the placement of field elements involved in making this system function. 

1. The location of the signs will vary based on the design of the work zone. Signs may be 
located at the first vehicle of the queue or at half to two-thirds length of the estimated 
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longest queue length for a 15-minute closure for the given highway location. In other 
words, the location of the flagging station can be different from that of the time 
measurement display. These locations are shown in Figure 3-1. 

 

2. The system should be designed such that the display and other system components could 
be placed when there are no paved or unpaved shoulders available at the work zone ends 

3.3. Communication Requirements 

Caltrans District 2 and other districts have highways that pass through terrain where there are 
numerous communication challenges. Therefore, the communication system chosen for this 
system should meet the following requirements. 

1. The system should be able to work at work zones with no line of sight between ends. 
2. The system should be able to work at work zones where there is either poor or no cell 

phone coverage. 
3. The system should preferably use a type of communication that has the least amount of 

recurring costs per use. 
4. The system should be able to overcome any communication hindrances from roadsides or 

other vehicles passing through the work zone. 

3.4. Input Requirements 

In order to help ensure its stability, the system should be designed to require a minimal amount 
of human input and customization specific to the work zone sites. The following requirements 
are based on this vision. 

1. The system should account for possible manual errors whenever there is a manual input 
required, using appropriate error-checking and quality control mechanisms. 

2. Use of manual inputs should be minimized and avoided if possible. 
3. Automation of vehicle location as an input to the system is preferred. 

Delay

maximum queue length

03

At start of
queue

Delay
03

Half to 2/3 back
from start

 

Figure 3-1: Schematic Showing Placement of Signs 
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3.5. Ease-of-Use Requirements 

A typical work zone is expected to be set-up within two hours. Therefore, it is expected that the 
set-up requirements of this system should not add too much additional effort; otherwise it will 
not be used.  

1. The system shall require no more than 30 minutes to be set-up at the work zone location. 
2. The system shall not require commercial power sources. 
3. The system shall not require more than nominal repair and regular maintenance. 
4. The system shall be portable comparable to other work zone traffic control elements (e.g. 

cones, temporary traffic signal controls) 

These user requirements guided the research team through the remaining aspects of designing 
this application. Continuing evaluation of user requirements is an integral part of system 
development using a systems engineering process. Therefore, these user requirements will have 
to revisited and modified, if necessary, throughout the progression of the stages of system 
development. 
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4. METHODOLOGY 

As the user requirements suggested, there were several functional areas for this system, and the 
system had to be designed in an integrated fashion while meeting the user requirements or 
allowing for meeting the user requirements in the future with further research and testing in each 
of the functional areas. For the purpose of documenting the design and testing efforts of this 
prototype system, this process is generally categorized into three major functional areas. It 
should be noted that these three major divisions intersect and interact in numerous ways all along 
this process. 

4.1. Systems Engineering Process 

For successful design and implementation of a complex system in a team environment, the 
systems engineering process model has been extensively employed. The systems engineering 
process model, as illustrated by the “Vee” Model in Figure 4-1, was followed in designing and 
developing the proof-of-concept system for this project. A systems engineering approach 
increases the likelihood that the system will work, satisfy customer needs, and meet acceptable 
cost and schedule constraints.  

 

Figure 4-1: "Vee" Model for Systems Engineering 
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4.2. Caltrans Stages of Research Deployment  

Caltrans has identified five stages for developing initial concepts that will help Caltrans conduct 
projects that are well-researched and deployed in a sound fashion. The five stages are: 

1. Concept Stage 

2. Laboratory Prototype Stage 

3. Controlled Field Demonstration Stage 

4. First Application (Contract) Field Pilot Stage 

5. Specification & Standards with Full Corporate Deployment Stage 

The systems engineering process model can be used iteratively to conduct research and 
development through these phases. Following such an approach allows for requirements, design 
and the system itself to evolve progressively toward deployment for production use. 

Due to the limited time available for design and development within this project, the goal of this 
project was to develop a system that corresponds to Stage 2 (Figure 4-2), the Laboratory 
Prototype Stage. If the developed system shows promise, then it would be recommended that 
research and development be conducted to evolve the system to subsequent stages eventually 
leading to production. 

 

 

Figure 4-2: Alignment with Caltrans Stages of Research Deployment 
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4.3. Laboratory Prototype System Plan, Primary Research Components and 
System Design 

The goal in the development of the laboratory prototype system was to develop a “proof-of-
concept” that could be evaluated in a laboratory setting and that could be used to evaluate 
prospective system components and algorithms.  

Based on the identified user requirements, the development of a laboratory prototype system was 
divided into equipment and technology, communication technologies, and delay estimation and 
computation. These three distinct areas were researched in a collaborative way for the 
development of a proof-of-concept system and for the evaluation of technologies and techniques 
for prospective subsequent application to this problem. 

The end product of this project would be the proof-of-concept system, assuming it could be 
successfully built, and recommendations for further development and eventual production use. 
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5. EQUIPMENT AND TECHNOLOGY 

5.1. Background 

There are a number of technologies that could be applied as components within a solution system 
for this problem. The basic logical components that a solution system might include are: 

• signs (changeable message signs) to display delay information to drivers at both ends of the 
work zone; 

• controllers (computing devices used to control sign displays); 
• transmitters (telecommunication devices to transmit information); 
• receivers (telecommunication devices to receive information); 
• data loggers (computing devices to log information such as pilot car location and speed); 
• location sensors (used to determine the location of the pilot car [i.e., GPS units]); and 
• user interfaces, used to provide information and retrieve input from system users. 

Other components such as traffic counters might also be considered. 

It was not feasible to evaluate all possible component combinations for viability within the scope 
of this project. Instead, efforts were focused on one configuration of components that appeared 
promising and that could be constructed and lab-tested prior to project completion. This 
approach should be characterized as a “proof-of-concept.” By no means is it implied that this 
configuration is ready for production deployment. In fact, extensive further testing and 
development of this system and evaluation of alternatives would be necessary prior to production 
deployment. However, this test configuration does demonstrate the potential viability of such a 
system. 

5.2. Challenges 

The biggest technological challenge is data communication, which is addressed in Chapter 7. 
Other general challenges include hardening equipment for field use, and addressing user 
interface and setup issues. These challenges should be addressed in subsequent research. 

Supplying power to equipment is yet another challenge. For the purpose of this study, it was 
assumed that equipment could reside within vehicles and that vehicles could supply power via 
12V DC. Ultimately, consideration would need to be given to integrating components into 
vehicles, onto signs, and perhaps onto other field-ready units. The challenge of integration is 
non-trivial and would require significant further investigation. 

5.3. Components  

The proof-of-concept system consists of components separated into two modules, the pilot car 
module and the endpoint module. The pilot care module (as seen in Figure 5-1) contains: 

• Combined Data Logger and User Interface (Notebook PC) 
• Combined Transmitter and Receiver (Wi-Fi Interface) 
• Location Sensor (GPS) 
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The end point module (as seen in Figure 5-2) contains: 

• Signs (LED Changeable Message Signs) 
• Combined Data Logger, Controller, and User Interface (Notebook PC) 
• Combined Transmitter and Receiver (Wi-Fi Router, Wi-Fi Interface) 

 

 

Figure 5-1: Pilot Car Module Equipment 
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The specific components used are described in the following sections. 

5.3.1. Notebook PC 

A notebook PC is used in both the pilot car and at end points of the work zone. In the pilot car, 
the notebook PC serves as both a data logger and user interface. At the end points, the notebook 
PC serves as a data logger, user interface and sign controller. The notebook PC was chosen 
because it provides sufficient computational power and known compatibility with all of the other 
components. Other versions of the system may employ a different device for the same functions. 

An IBM ThinkPad T42 PC is used in the proof-of-concept system. It contains an Intel Pentium 
Mobile processor operating at 1.7GHz and 256 MB of memory. The ThinkPad operating system 
is Microsoft XP Service Pack 2. Interfaces include two USB 2.0 Hi-Speed ports. 

5.3.2. Wi-Fi Interface 

A Wi-Fi interface is used in both the pilot car and end points to send and receive data from one 
computer to another. Wi-Fi was chosen for simplicity and for its ability to meet the relatively 
light data size requirements for the demonstration system. Standard network communications 

 

Figure 5-2: End Point Module Equipment 
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protocols (specifically TCP/IP) can easily be implemented over the Wi-Fi interface. Other 
versions of the system may employ a different device or communications scheme. 

An 802.11g Wi-Fi network adapter is integrated into the ThinkPad Notebook PC. The interface 
is an Intel PRO/Wireless 2915ABG Network Connection. A Microsoft XP wireless service, 
Wireless Zero Configuration, automatically controls the wireless adapter. The wireless antenna is 
integrated into the screen of the laptop and is not visible. 

5.3.3. GPS 

A GPS device is used in the pilot car to determine the location of the pilot car and each end 
point. GPS was chosen for its known effectiveness and ease-of-use. Other versions of the system 
may employ a different device or method of determining location. 

The proof-of-concept system uses a Pharos iGPS-360 device. The unit has an integrated antenna 
and connects to the notebook PCs via a Serial-to-USB converter. The unit automatically outputs 
standard NMEA-0183(V2.3) strings approximately once per second. 

5.3.4. Signs 

A LED changeable message sign was used at the end points to display wait time and other 
messages to motorists. The sign uses a standard computer interface (RS-232) and documented 
method of communication via computer code. The sign was chosen for its simplicity, ability to 
prove the concept, and ease of procurement. Other versions of the system may employ different 
signs for displaying information. 

The demonstration system uses an Adaptive Microsystems BetaBrite message sign. The 
BetaBrite is a one-line LED sign capable of displaying 14 characters per line. Its character array 
is a 5-inch by 7-inch LED pixel matrix. The sign uses a standard serial communications interface 
(RS-232) and a documented message protocol (ALPHA Protocol). The sign is connected to the 
computer via a Belkin Serial-to-USB converter (#F5U109). 

5.3.5. Wi-Fi Router 

A Wi-Fi router was used at the end points to facilitate data transfer between the pilot car and the 
end points. The router was used for its simplicity in establishing network associations between 
wireless adapters and for its ease of administration. Other versions of the system may employ a 
different means of facilitating data transfer. 

The proof-of-concept system uses a D-Link 802.11g wireless router (Di-634). The router 
contains four antennae (two external and two internal). The router automatically uses the antenna 
with the best signal strength. In addition, the router contains several Ethernet jacks for wired 
network communication, although all communications are wireless. The demonstration system 
uses WPA TKIP encryption.  
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5.4. System Design 

Each module of the demonstration system – the pilot car module and the end point module – 
contains a software application to control the flow of data and ultimately allow the delay 
estimation algorithms to be implemented. The major goal of the modules is to provide the proper 
inputs to the delay algorithms and manage their outputs. Management of the outputs may include 
displaying messages on the signs or simply storing the results. Each application uses the 
components available in its corresponding module to accomplish this goal. The applications run 
concurrently and interact when appropriate. 

The module applications must be able to respond to certain events accordingly by transferring 
data to each other, recording data, and making computations. Due to the nature of the 
communications scheme, communication only between an end point and pilot car (discussed 
further in Chapter 6), there are four such events. Assuming end points are labeled A and B, the 
events are as follows: 

• Pilot car arrives at A, 
• Pilot car departs A, 
• Pilot car arrives at B, and 
• Pilot car departs B. 

Correspondingly, there are four possible system states for the pilot car application:  

• At A, 
• Moving from A to B, 
• At B, and 
• Moving from B to A. 

The relationships between these events and the four possible system states are shown in Figure 
5-3. The system is in only one state at any given time, and the states must follow a logical 
sequence. For instance, the system cannot change from state “At A” directly to state “At B” 
without first entering state “Moving from A to B”. State changes are triggered by the four events 
above. When a state change is detected, data must be recorded, transferred, and computed such 
that estimation algorithms will have the correct inputs and their outputs are managed effectively.  
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A general flow of data is shown in Table 1. Each cell shows the required actions taken by the 
modules upon transition into a new state. 

4

3 2

1
Pilot Car 

at A

Pilot Car 
at B

Pilot Car 
Moves from 

A to B

Pilot Car 
Moves from 

B to A

Arrives 
at A

Arrives 
at B

Leaves 
from A

Leaves 
from B

 

Figure 5-3: Relationship of States and Events in Work Zone 
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Table 1: Summary of Data Flow 

The general flow of data above highlights several key functions of both the end point and pilot 
car applications. Support of the estimation algorithms depends on the effectiveness of each 
application accomplishing these functions.  

Pilot Car Application 

The application in the pilot car performs several functions.  

• State Determination. The application determines if the pilot car is at end point A, end 
point B, en route from A to B, or en route from B to A. State determination is 
accomplished through GPS interpretation, assuming that the locations of both A and B 
are known. State determination involves several factors including velocity, direction of 
travel, and distance from the pilot car to the end points. It may also involve recording the 
path of the pilot car. 

• Time Span Calculation and Storage. The application stores timestamps corresponding to 
times at which the pilot car transitions from one state to another. Using these timestamps, 
the application must calculate state durations. For example, the length of time at end 
point A is determined using the timestamp for both the arrival and departure at end point 
A. 

• Data Transfer. State durations are automatically transferred to and received from each of 
the end point software applications when communication is possible. 

 
Component 

State 1 
At A 

State 2 
A to B 

State 3 
At B 

State 4 
B to A 

Pilot Car • Record time 
• Calculate trip 

length 
• Send data to A 

• Record Time 
• Calculate wait 

length 
• Send data to A 
• Receive data 

from A 

• Record Time 
• Calculate trip 

length 
• Send data to B 

• Record Time 
• Calculate wait 

length 
• Send data to B 
• Receive data 

from B 
A • Receive data 

from PC 
• Update sign 

message 

• Receive data 
from PC 

• Estimate delays
• Send data to PC
• Update sign 

message 

N/A N/A 

B N/A N/A • Receive data 
from PC 

• Update sign 
message 

• Receive data 
from PC 

• Estimate delays
• Send data to PC
• Update sign 

message 
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• User Interface. The application provides a Graphical User Interface (GUI) to the driver of 
the pilot car. The GUI facilitates system initialization, allows the user to manually control 
the sign, and provides real-time status information (such as “Waiting at A”). The 
interface may also provide manual override of current state information and user 
confirmation prompts if necessary. (Note that a GUI was chosen to expedite research and 
development. For production deployment, it may be desirable to implement a hands-free 
system. Further investigation would be necessary to implement such a system.) 

End Point Application 

The application at each work zone end point is identical and performs several functions: 

• Sign Control. The application displays a message on the sign dynamically and is aware of 
the sign’s current message.  

• Time Span Calculation and Storage. The application stores timestamps and determines 
time spans for all time segments of the delay algorithm. 

• Data Transfer. The application automatically transfers data to and receives data from the 
pilot car application and perhaps from the application running on the other end point. 

• Delay Time Algorithm. The application determines the delay at its end point using a 
combination of current cycle times spans, historical data, and estimates traffic volumes. 
The output of the delay algorithm is displayed on the sign. 

• User Interface. The application provides a GUI to a user at the end point (such as the 
flagger). The GUI facilitates system initialization, allows the user to manually control the 
sign, and provides real-time status information. The application may also provide manual 
override of state information and user confirmation prompts if necessary. The GUI will 
allow (and may require) the flagger to indicate the time when the end point is closed for a 
particular cycle. (Note that a GUI was chosen to expedite research and development. For 
production deployment, it may be desirable to implement a hands-free system. Further 
investigation would be necessary to implement such a system.) 

5.4.1. State Determination 

The pilot car application automatically determines the state of the system by detecting when the 
pilot car arrives and departs the end points. The system uses GPS coordinates of both the pilot 
car and the end points to determine system state. Assuming that the end point locations are 
known and that GPS data for the pilot car is readily available, the system compares pilot car 
location with that of the end points to determine state. Three components necessary to determine 
state are interpreting the GPS, calculating the distance between two points (namely the location 
of the pilot car and that of an end point), and calculating the direction of travel. 



Evaluation of ITS Technologies in Rural Work Zones Equipment and Technology 

Western Transportation Institute  23 

Interpreting GPS Data 

The GPS device outputs NMEA-0183 standard strings about once per second without being 
polled. Information pertaining to the longitude and latitude coordinates and velocity are included 
as well as information about the satellites from which the location is calculated. Code was 
written to extract the latitude and longitude coordinates when provided by the GPS device.  

Initial tests showed that the location of the device could be determined effectively and archived. 
Locations pertaining to several driving and walking tests were plotted on a map and were shown 
to represent the actual path traveled. 

Calculating Inter-Point Distance 

The distance between two latitude and longitude coordinates must be calculated in real-time to 
determine the distance between the pilot car and an end point. The formula used is: 
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 where latx = latitude of point x 
 lonx = longitude of point x 

The formula was tested using stationary, sample points with known distances. Tests showed that 
the formula effectively determined the distance between the stationary points. Further tests were 
performed using a stationary point and a moving point. These tests showed that the distance 
between a stationary point and a moving point can be effectively determined by the formula in 
real-time. Since this configuration of points, one stationary and one moving point, resembles that 
of the work zone, the formula is sufficient for use in the work zone demonstration system. 

After the distance procedure was shown to be useful, it was then used to test whether the system 
could determine if the pilot car had arrived at an end point with a known location. This 
determination is not as simple as detecting when the distance between the pilot car and end point 
is zero feet, since GPS readings are accurate only within ±10 meters. Therefore, the system may 
never detect that the pilot car has reached the end point. A buffer zone surrounding the endpoint 
was employed to compensate for the inaccuracy. The buffer zone is illustrated in Figure 5-4. 
Locations with green icons are within the buffer zone while locations with red icons are outside 
the buffer zone. 
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The size of the buffer zone is important to the effectiveness of the system. If the buffer zone is 
too small, there is a risk of missing when the pilot car arrives at or departs from an end point. 
However, if the event is detected using a small buffer zone, it will be detected close to the actual 
time that the pilot car arrived at the end point. Conversely, making the buffer zone too large will 
increase the likelihood of the system detecting when the pilot car arrives and departs an end 
point, but there will be a larger error between when the event is detected and when it actually 
occurred. Testing of the system to determine a sufficient buffer showed that a distance of 125 
feet is adequate. At this distance, the system was consistently recognizing pilot car arrivals and 
departures. The difference between when the arrivals and departures actually occurred and when 
they were detected were generally about 10 to 15 seconds. This error is reasonable compared to 

 

Figure 5-4: End Point Buffer Zone Illustration 
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the anticipated duration of delay at a work zone (10-15 minutes). However, the limited testing 
only involved arriving at an end point, turning around at the end point, and departing the end 
point along the same path. Attempts to arrive at the end point, continue outside the buffer zone, 
turnaround, and travel back through the buffer zone, as illustrated by Figure 5-4, produced poor 
results. This issue is addressed in the next section. 

Calculating Direction of Travel 

Calculating the distance between the end points and the pilot car alone is not sufficient to 
determine state. A pilot car arriving at an end point must turn around to return to the other end 
point. However, the location of the turnaround is not consistent for all work zones. Therefore, the 
pilot car driver might choose to travel well past the end point to perform the maneuver, as is 
illustrated in Figure 5-4. If distance alone were used to determine state, the system would have 
incorrectly identified the pilot car, intending to turn around past the end point, as departing the 
endpoint. Using Figure 5-4 as an example, the system would first correctly detect that the pilot 
car has arrived at the end point at Location 2. However, as the pilot car passes through Location 
4, the system would incorrectly detect that the pilot car has departed the end point based on 
distance alone. After the pilot car completes the turnaround maneuver, the system would 
incorrectly detect that the pilot car has arrived at the end point at Location 6. The system would 
then correctly detect that the pilot car has departed the end point at Location 8. Based on this 
behavior, timestamp and subsequent time span calculations would not be correct.  

A two-dimensional approach employing distance and the relative direction of one point to 
another is employed to determine system state. The pilot car application stores both the current 
and the last latitude/longitude coordinates pertaining to the location of the pilot car. When the 
system detects that the pilot car has entered the end point buffer zone, the direction of the current 
point (first point inside the buffer zone) relative to the last point (last point outside the buffer 
zone) is recorded. When the system detects that the pilot car is outside the buffer zone, the 
direction of the previous point (last point within the buffer zone) relative to the current point 
(first point outside the buffer zone) is recorded. If this direction is similar to the first recorded 
angle, it can be assumed that the pilot car is traveling in roughly the opposite direction as when it 
arrived. Based on this fact and the fact that the pilot car is now outside the buffer zone, the 
system then determines that the pilot car is departing the end point. If the directions are not 
similar, it can be assumed that the pilot car is traveling outside the buffer zone, but is not heading 
back in the general direction from which it arrived. Therefore, no state change is necessary. 

Again referring to Figure 5-4, the system detects that the pilot car has arrived at the end point at 
Location 2. Therefore, the direction of Location 2 relative to Location 1 is recorded. The system 
then detects that the pilot car moves outside of the buffer zone at Location 4. Then, the direction 
of Location 3 relative to Location 4 is compared to the direction of Location 2 relative to 
Location 1. The directions are not similar (in fact, nearly opposite); therefore, no state change is 
detected. The system detects that the pilot car has re-entered the buffer zone at Location 6, but 
the arrival to the end point does not represent a state change since the system state indicates that 
the pilot car is already at the end point. Therefore, the arrival at Location 6 is ignored. The 
system detects that the pilot car has traveled outside the buffer zone at Location 8. The direction 
of Location 7 relative to Location 8 is compared to the direction of Location 2 relative to 
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Location 1. Since the directions are similar, the system determines that the pilot car has departed 
the end point. 

Tests were performed to determine how similar directions would have to be to determine if the 
pilot car is indeed departing or simply moving away from the endpoint but not departing. Too 
small of a similarity between directions (< 10˚) would require the pilot car to arrive and depart at 
nearly the same angle, a requirement that may not be met due to pilot car path randomness and 
GPS error. Setting the value too large (> 180˚) may allow the pilot car to falsely trigger a 
departure. The tests showed that a value of 170˚ was effective in determining when a pilot car 
was actually departing an end point versus driving past the end point to turn around outside the 
buffer zone. 

The pilot car application can determine states sufficiently, without user interaction, for the 
testing of the proof-of-concept system. Further work is needed to determine if the methods used 
are robust enough to succeed in subsequent versions of the system and in a real-world testing 
situation. The current method was chosen because it is sufficient for the controlled testing 
purposes and is simple to set-up and use. Other technologies may be used instead of or in 
combination with the current methods. A possible alternative is to use signal strength of the 
communications mechanisms as an indicator of the location of the pilot car in relation to the end 
point. However, additional work must be done to investigate the effectiveness of such a method. 
Also, more GPS data could be employed to determine system state, such as velocity and 
historical path information.  

5.4.2. Time Span Calculation and Storage 

Inputs to the estimation algorithms include information concerning the length of time required 
for the pilot car to wait at the end points and travel from one end point to another. The ability to 
accurately record times corresponding to certain events and store these times is important to the 
effectiveness of the estimation algorithms. Times corresponding to when the pilot car arrives at 
and departs the end points are essential. Also organizing the times and storing them is necessary 
to provide a historical profile of pilot car activities. 

There are two methods for recording and using times. First, timestamps pertaining to the actual 
time of day that an event occurred can be used. The system would then keep a record of the times 
when states changed. Alternatively, the system could use the timestamps to calculate time spans. 
Whereas using timestamps alone associates a time element with events, the use of timestamps to 
determine time spans associates a time element with the duration the system remains in a state. 

The proof-of-concept system uses time spans calculated from timestamps derived from the 
system clock. The time spans are transferred from one computer to another every time the pilot 
car arrives at or departs an end point. Using time spans removes the requirement for system 
clocks on different computers to be synchronized. Testing showed that timestamps could be 
temporarily stored using a system clock and that a time span can be calculated using two 
timestamps and subsequently stored. Time span information is consistent and accurate despite 
discrepancies in individual system clocks and with no further configuration by the user. 
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5.4.3. Data Transfer 

The system incorporates three concurrently running software applications: one for the pilot car 
and two identical applications for the endpoints. The applications must transfer data to each other 
to provide the estimation algorithms with the proper inputs. Since there is only communication 
between an end point and a pilot car, the only means of communication between end points is 
through the pilot car. When the pilot car arrives at or departs from one end point, data is 
exchanged. An efficient mechanism for data transfer is needed to facilitate the exchange. The 
system uses TCP/IP over 802.11g Wi-Fi to exchange data. 

Wi-Fi 802.11g networks were chosen for simplicity and ease-of-use. A network can be easily 
configured using standalone routers and wireless adapters that are already integrated into the 
notebook computers. Therefore, extraneous wires and antennas are not required and setup may 
be as easy as providing power to the routers and laptop computers. The Zero Configuration 
Service automatically handles associations with new access points and the ability to restrict 
connections to certain access points. The system is configured to only associate with the 
specified network(s) corresponding to the end points. In addition, static addressing is activated to 
save time in the association process. It is noted that Windows XP Firewall and any antivirus 
programs are deactivated. While these can be configured to work with the system, they were 
unnecessary and caused minor communications difficulties.  

The system employs standard TCP/IP network protocols for data communications over the Wi-Fi 
network. This provides standard means of establishing connections and transferring data between 
one computer and another. Tests were performed using two computers, in close proximity, 
wirelessly connected to the same network. Tests showed that data can be consistently transferred 
from one computer to another. Also, data can be transferred and manipulated back and forth.  

While the use of a Wi-Fi network requires minimal setup and hardware overhead, the usable 
range of the network is relatively short compared to other communications mechanisms. Tests 
showed that usable signal strengths were retained as far as 850 feet from a wireless router inside 
a building. However, these results were obtained placing the wireless router close to the window, 
with no major obstructions between the router and the test computer, and with a test computer in 
the open (not in a vehicle). Altering the test conditions produced significantly different results. 
For instance, using the test computer in a car and having several walls between the computer and 
the router decreased the useable range to about 200 feet. It cannot be assumed that even this 
range can be maintained for all situations, but it is acceptable for demonstration and testing of 
the system. The pilot car is not required to communicate with the end points until it is within the 
buffer zone of the end point. Assuming that the buffer zone is 125 feet, the range of the wireless 
router is sufficient for testing. 

Though transferring data between two computers that were previously connected to the same 
wireless network was successful, the proof-of-concept system requires automatic association of a 
new network and subsequent data transfer to reliably occur in the correct order and in a 
predictable fashion. Tests involving a pilot car starting out of range of the end point router, 
arriving at the end point, and attempting to transfer data initially produced mediocre results. 
While it was known that the pilot car was well within range of the end point router, the 
association of the pilot car computer to that router occurred at seemingly random times. Further 
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investigation revealed that the Windows Zero Configuration service only polls for new access 
points once per 60 seconds. As a result, the pilot car may take up to 60 seconds to associate with 
the network once the car is within range of the network. This delay would then require that the 
pilot car be stationed at an end point until the data is transferred, a requirement that may or may 
not be feasible. However, a workaround was employed that simply forces the Wireless Zero 
Configuration service to associate with the new access point once the system detects that the 
pilot car is within the buffer zone of the end point. Tests showed that the association process 
occurred reliably within 8-10 seconds after entrance to the buffer zone, at which point data is 
consistently transferred to the endpoint. This association mechanism is sufficient for 
demonstration testing, but further investigation is necessary to determine a robust method of 
access point polling and subsequent association. 

A key requirement of the proof-of-concept system is that data be automatically and reliably 
transferred to and from system computers. Tests have shown that Wi-Fi 802.11g is a suitable 
communications medium for such transfers. Data can be successfully transferred between 
computers within a range that is suitable for the demonstration system. Users are not required to 
interact with the system for data to be transferred. 

5.4.4. Sign Control 

An essential feature of the proof-of-concept system is a public interface to real-time travel 
information in the form of a dynamic message sign. The system must automatically display real-
time delay information. Therefore, the sign must have a standard hardware interface and 
documented communications protocol with which to control the information displayed. The sign 
primarily investigated for the proof-of-concept system, the BetaBrite, meets these requirements. 

The BetaBrite uses a standard RS-232 communications interface for connectivity to a computer 
and the ALPHA protocol as a message protocol. Tests showed that a computer can successfully 
communicate with the sign and cause the sign to display a predetermined message instantly. The 
message on the sign can be changed at any time. In addition, the memory of the sign is sufficient 
to store and display the messages necessary for the work zone system. 

Although the use of a BetaBrite is not suitable for use in a deployment system, the sign does 
demonstrate that the system can integrate a visual display device. The underlying interaction 
between the proof-of-concept system computers and the BetaBrite through serial 
communications via the ALPHA protocol is similar to the interaction between Caltrans’ Sign 
View software, hosted on a computer, and sign controllers through serial communications via the 
SV170 communications protocol. Assuming that a more suitable sign (larger, field-worthy, 
Caltrans-compliant LED display) contains a standard computer interface and message protocol, it 
is reasonable to assume that the proof-of-concept system can integrate the sign.  

Additional work involving sign control includes researching and testing the national protocol for 
communication with field devices (NTCIP), which was too complex to be properly tested in the 
proof-of-concept system. Future work also involves investigating the use of additional signs at 
each end point, including their placement and messages. The research into power supply and end 
point-to-sign communication is also of interest. 
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5.4.5. User Interface 

The proof-of-concept system employs a user interface in both the end point and pilot car 
applications. The user interface allows operators to view system information in real-time. Such 
information includes current and historical timestamps and time spans, the message on the sign, 
the contents of the messages being transferred between applications, and system state. In 
addition, the interface provides users the ability to interact directly with the system. This 
interaction is required for two processes: initialization and testing. During initialization, 
communication parameters, such as TCP ports and IP addresses, are specified, as are the latitude 
and longitude of the end points. Testing requires the user to indicate when arrivals and departures 
actually occur. Users indicate these times using the interface and the values are compared to 
system measurements. A voice interface is employed to notify pilot car drivers of a state change. 
Tests showed that all information available via the user interface is consistent to the underlying 
system values. 

Although the proof-of-concept system employs a user interface, the shape of an interface in 
future systems is unclear without further investigation. Initialization is an essential function and 
will likely require an interface. However, other information, such as timestamps and time spans, 
may not serve a purpose in a deployment system resulting in a smaller user interface. More work 
must be done to determine the degree of control a user may be able to exercise over the system. 
The results of such work will influence the components of the interface. 

5.4.6. Delay Time Algorithm 

The proof-of-concept system must allow the delay time algorithms to be implemented in real 
time. The system is designed such that different algorithms may be “plugged” in when needed 
without causing instability to the rest of the system. The modular design allows for the addition 
of new algorithms or for using a variety of algorithms during the course of the day. Tests showed 
that the algorithms could be coded and integrated with no difficulty. Given the proper inputs, the 
algorithms can produce expected outputs. 

5.4.7. Proof-of-Concept System 

All individual components necessary to test the delay estimation algorithms were created and 
tested as discussed above. A complete proof-of-concept system was created, integrating all of the 
components. The system was designed in a modular fashion, using object-oriented principles, to 
accommodate new equipment and technology decisions. For instance, using a new sign or GPS 
device does not require a complete redesign of the system. Rather, only a new module for the 
specific device must be developed to integrate with the change. It should also be noted that 
several estimation algorithms were integrated into the system in a similarly modular fashion.  

5.5. Equipment and Technology Testing 

The complete proof-of-concept system was tested in and around the parking lot of the WTI 
facilities for several hours. The 0.5-mile-long testing site was chosen for convenience and the 
relatively light traffic conditions during the test. The site is shown in Figure 5-5. Approximately 
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22 complete trips between end points were traveled. The purpose of the tests was to investigate 
the effectiveness of a complete system using all of the equipment and technology components 
and the effectiveness of the algorithms. The system tested contained an end point module located 
in the WTI Systems Engineering Laboratory. The pilot car module was housed in a private 
vehicle. It was not feasible to setup an end point module at the end point site far away from the 
building. Therefore, the end point application was run concurrently on the pilot car module 
computer, minus a display sign. More information concerning the testing in reference to the 
estimation algorithms is discussed in Chapter 6. 

5.6. Equipment and Technology Findings and Recommendations 

A complete proof-of-concept system, upon which the estimation algorithms could be 
implemented, was designed and built using several components. The system uses two main 
applications and associated hardware. The pilot car module records timestamps, calculates time 
spans, transfers/receives data, and determines the system state. The end point module 
transfers/receives data, estimates delay times, and controls the sign. Both modules also involve a 
user interface for initialization and system monitoring.  

The controlled lab tests showed that all components of the complete proof-of-concept system 
performed properly. The system was able to initialize properly and detect all arrivals and 
departures. Communication between computers encountered no difficulties. All time span 

 

Figure 5-5: Aerial Photo Showing the Path of One Test Run 
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recordings were properly completed. As a result, the estimation algorithms received the proper 
inputs and were able to perform calculations effectively.  

In short, the limited tests showed that the proof-of-concept system could support the estimation 
algorithms and display useful information using LED message signs. The system involves 
minimal user input or external data to run properly. The hardware components are relatively easy 
to set-up and to use. In short, the system serves as a “proof of concept” showing that technology 
can be used to effectively convey relevant information at work zones.  

Although the controlled test results of the proof-of-concept system were promising, it should be 
noted that the system is not ready for deployment. Further investigation involving several areas 
of the system is needed to determine the optimal configuration.  

While the system used two notebook computers for many tasks, it may be possible to use other, 
lightweight devices instead. For instance, an alternate configuration may defer all calculations to 
the end points, allowing the pilot car system to be little more than a GPS device continuously 
transmitting its location. Other configurations include using embedded controllers at the end 
points that would handle control of sign or any other devices.  

The proof-of-concept system uses GPS to determine pilot car arrivals and departures relative to 
end points. While this was adequate for use in the controlled lab test, GPS is not suitable for use 
in all topographical or environmental conditions. Effective use of GPS assumes a clear view of 
the sky. However, such conditions cannot be guaranteed for deployment. Dense overhead foliage 
or other obstructions may be common in the field. Therefore, other methods of state 
determination must be researched and possibly used with GPS to provide a more robust system. 
In addition, the test site contained relatively straightforward approaches to the end points while 
deployment requires that the state determination mechanism perform well in any circumstance. 
Work zone site geometry and pilot car driver behavior influences the effectiveness of state 
determination. Additional work must be done to provide a state determination mechanism that is 
relatively immune to driver behavior and road geometry.  

Wi-Fi 802.11g is used as a communications medium between computers in the proof-of-concept 
system. This means of communication was sufficient for testing in the lab but other technologies 
may be needed for deployment. If Wi-Fi is used in subsequent versions of the system, an 
investigation concerning the range of the Wi-Fi router must be performed to ensure effective 
field communications, especially in rugged areas with many obstructions. The system uses a 
workaround to poll for the access point once the pilot car has arrived at an end point. An 
investigation of a more robust method of access point polling should be undertaken. A closer 
look into security issues and solutions concerning Wi-Fi should also be taken. 

The user interface allows users to glimpse underlying system values for testing and initializing 
the system. Further work should be done to determine the role of the user interface in future 
systems. Other systems may include increased or reduced user involvement or the addition of 
historical data. The user interface must be able to facilitate these changes. It may be of interest to 
investigate a voice interface for initialization of system override functionality. For instance, the 
pilot car driver may simply say “At A” to indicate that the pilot car has arrived at end point A. 
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As both real-time and historical data are available, the role of an interface to the data collected by 
the system must be further investigated.  

The proof-of-concept system uses a BetaBrite LED message sign to visually convey delay 
information. While this sign is not intended for use in the field, it does have a standard computer 
interface and a documented communications protocol. These two attributes are required for use 
by this system and are essential for operation with Caltrans’ Sign View software. The use of 
field-appropriate signs, their interfaces and protocols, must be investigated for a deployable 
system. However, the underlying computer-to-sign communications principles are similar to 
those employed by Sign View to control Caltrans’ CMS devices. Given the modular nature of the 
demonstration system, it seems reasonable to assume that a more appropriate sign can be 
“plugged-in” in the future without too much difficulty. Further investigation concerning NTCIP 
compatibility must be completed to further evaluate the system’s integration potential. 
Furthermore, more research concerning the use of multiple signs, their placement, and the 
synchronization of their messages should be undertaken. 
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6. DELAY ESTIMATION AND COMPUTATION 

Based on the experience of Caltrans personnel, there are typically variations in a pilot car’s cycle 
length throughout a day in a two-lane rural highway due to the following reasons: 

• Interruptions in the pilot car progression through the work zone due to work zone 
activities (e.g. temporary heavy equipment movement encroaching the traffic lane); 

• Unavoidable variations in the traveling speed of the pilot car through work zones; and 
• Variations in the arrival rate of vehicles for different hours of the day. 

The variations in wait times between cycles add to driver frustration when they are not informed 
of how long the wait will be. As explained earlier, the user requirements for the Delay 
Estimation and Display functional area of the system states that the accuracy of the displayed 
time measurement (i.e. either total delay or stopped delay) should be within the range of ±2 
minutes.  

This chapter summarizes how algorithms for estimating and computing delay were developed 
and tested. Due to the fact that there were only three months available for the design and testing 
of the prototype system, testing of the accuracy of the following algorithms was limited and 
allowance to meet the user requirements in the future were made in general design of algorithms. 

6.1. Background 

6.1.1. Policies 

Caltrans and other agencies may have policies that affect how the system’s estimation of delay 
may work. Typical work zone delays range between 10 and 15 minutes, as Caltrans has adopted 
a policy to keep the wait times to no more than 15 minutes. All vehicles that are stopped at one 
end of the work zone will be allowed to exit during one cycle; in other words, a flagger will not 
stop traffic in the middle of a queue of vehicles starting to move through the zone. Pilot cars will 
also generally follow the posted speed limit through the work zone. 

6.1.2. Definition of Delay 

Generally, the delay caused by work zones can be seen in two different ways. The total delay 
caused by the presence of work zone on highways includes the stopped delay and the delay due 
to lower speeds in the sections leading up to the work zone. As stated in the user requirements 
(Chapter 3), three options for the type of delay estimation to be displayed were considered.  

1. Time before the first car in the queue starts to move to go through the work zone 

2. Time for the first car in the queue to get to the other end of the work zone 

3. Delay due to the work zone (i.e. the difference in travel times between any two points 
encompassing the work zone with and with out the work zone) 



Evaluation of ITS Technologies in Rural Work Zones Delay Estimation and Computation 

Western Transportation Institute  34 

The research team decided to estimate delay according to option 1, as this was considered to be 
the most relevant information sought by the waiting public. It should be noted that these three 
measures are related, and the general design of the system will be able to accommodate the other 
options with only limited changes. 

6.1.3. Terminology 

The first step towards measuring the wait time (i.e. the time before the first car in the queue starts 
to move to go through the work zone) was to define one cycle of pilot car operations, since the 
pilot car’s operations for the whole day are essentially repetitions of one complete set of 
operations. Generally, the total cycle length is defined as the time difference between the times 
of two consecutive departures of the pilot car from any clearly defined location along its path 
through the work zone. For the purposes of the prototype system, using a work zone whose 
endpoints are defined as A and B, the cycle length has been defined as the time difference 
between two consecutive departures of the pilot car from end A of the work zone.  

Following this definition of the cycle length (also referred to as cycle time or cycle duration), 
one cycle of pilot car operation consists of a series of four states: the pilot car waiting at A (State 
1), the pilot car traveling from A to B (State 2), the pilot car waiting at B (State 3), and the pilot 
car traveling from B to A (State 4). These were shown in Figure 5-3. The pilot car wait times at 
the ends are defined as the time between when the pilot car arrives at and leaves from an end. 
This includes the turnaround time of the pilot car.  

For this chapter, assuming a work zone with two ends of the work zone defined as A and B, the 
following expressions are used: 

 Ci = Time length of cycle i 
 TADi = Time of departure of pilot car from end A of work zone in cycle i 
 TAAi = Time of arrival of pilot car at end A of the work zone in cycle i 
 TBDi = Time of departure of pilot car at end B of the work zone in cycle i 
 TBAi = Time of arrival of pilot car at end B of the work zone in cycle i 
 TAFi = Time when the flagger closes the traffic at A 
 TBFi = Time when the flagger closes the traffic at B 
 L = Work zone length 
 v = Average pilot car speed 

Figure 6-1 details the travel through the work zone from the perspectives of the pilot car, the first 
car in line at both ends and the other cars in line at both ends. These perspectives are as follows. 

• Pilot car. As stated earlier, it is assumed that the cycle length begins when the pilot car 
departs from point A and ends when the pilot car next departs from point A. After 
traveling from A to B, the pilot car waits at end B until all the cars it is leading have 
passed it, and left the work zone. At this point, the pilot car turns around, and returns to 
A. At point A, the pilot car waits for all vehicles which followed it from B to pass 
through the work zone. This completes the cycle. 
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Figure 6-1: Timeline of Vehicle Operations inTwo-Lane Rural Highway Work Zones
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• First car waiting. The first car waiting at either end will proceed toward the other end of 
the work zone once the pilot car moves; this can be seen in Figure 6-1 where the events 
are shown simultaneously. Once the queue of cars has exited the work zone and the pilot 
car has turned around, traffic switches directions. 

• Waiting versus moving. These concepts may be combined to show how stopped delay 
may be calculated. For vehicles moving from A to B, the waiting time starts once the 
flagger stops traffic at end A, no longer allowing vehicles to enter the work zone. The 
waiting time ends at the start of the next cycle, when the pilot car starts to leave end A. 
The same is true for traffic leaving end B. Figure 6-1 shows two different components of 
waiting time for vehicles at end B, but it is conceptually identical to what is occurring at 
end A. 

The different states of the pilot car and its operations can also be explained using the Figure 6-2. 
shows one pilot car operation cycle in terms of four states of pilot car operations. 

 To simplify the notation, let the following be defined: 

 ABi =  Travel time (for pilot car) from A to B during period i (= TBAi - TADi) 
 BAi  =  Travel time (for pilot car) from B to A during period i (= TAAi+1 - TBDi) 
 Bi  =  Wait time (for pilot car) at B during period i (= TBDi - TBAi) 
 Ai  = Wait time (for pilot car) at A during period i (= TADi+1 - TAAi+1) 

The following sections use these terminologies and definitions for explaining the wait time 
estimation algorithms developed. 

 

Figure 6-2: Components of Cycle Duration 
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6.1.4. Challenges 

To accommodate the user requirements, the following constraints were considered in the 
development of wait time estimation algorithms. 

1. No site-specific traffic characteristics (e.g. real-time traffic data through detection 
equipment) are available as inputs to the algorithm. 

2. Only minimal human inputs and verification are possible. 

3. Cycle time variations between consecutive cycles of pilot car operations are expected. 

4. Traffic conditions for the first run of pilot car for the day are not known. 

5. Technology (e.g. in-pavement sensors) to determine the queue length at the work zone 
ends is not used. 

6. Communication between the pilot car and the wait time estimation systems (i.e. end point 
applications) is limited to the times when the pilot car is at the ends of the work zone. In 
other words, end-to-end communication for the length of the work zone is not assumed to 
be available. 

7. There is a possibility that there are failed communication attempts between pilot car and 
wait time estimation systems. 

8. The time at which the flagger closes an end point to traffic is unknown. 

6.1.5. Assumptions 

The following assumptions were made in the selection of algorithms for the prototype system to 
determine the wait times at both ends of the work zone. 

1. Wait time estimation is performed at the applications at the end points. 

2. Communication between the pilot car and end point applications occurs only at the end 
points. (However, further research may make end-to-end communication and multiple 
communications from various points along the work zone.) 

3. Archived information is available for at least the ten previous cycles.  

4. The wait time displayed by the system will indicate the time for the first car in line to 
start entering the work zone. 

6.2. Algorithm Development 

Based on the challenges and assumptions described above, a set of algorithms was chosen for 
further exploration in this study. The simplest of these algorithms was to use a moving average 
approach to estimate the wait time to be displayed. Four different ways of estimating moving 
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averages were explored and are discussed in this section. A methodology to improve the moving 
average was developed and is discussed below, although this methodology was not tested due to 
time constraints. Alternate methods to moving averages are briefly mentioned here and will need 
extensive future research before use. 

6.2.1. General Wait Time Estimates 

Delay for Vehicles Waiting at A: 

 ( )AFiBDiBDiADiAi TTTTD −+−= +1  (6-1) 

DAi should be displayed at the time of flagger closing A. At the time when flagger closes A, only 
TADi and TAFi are known, assuming that TAFi can be communicated to the processing unit at A 
reasonably instantaneously. This means that TADi+1 needs to be estimated when the flagger closes 
A. For the system to decide when to display the delay time, the system needs to know when 
flagger closes A. The system needs to know when the flaggers close the traffic or an estimate of 
when the flagger closes A. The time difference between the pilot car leaving an end and the 
flagger closing the end is a measure of the number of vehicles queued up at that end (i.e. A). An 
acceptable estimate of the number of vehicles queued up at that end could be the number of 
queued vehicles at that end (A) during the last cycle (i.e. the wait time of the pilot car at the other 
end [B] during the last cycle). 

If the time when the flagger closes the traffic at A (TAFi) is known then DAi can be written in the 
following terms. 

 AFiADiAi TTD −= +1  (6-2) 

Again, when the flagger closes the traffic and triggers an event at the processor at A, only TAFi is 
known; TADi+1 will have to be estimated. 

Delay for Vehicles Waiting at B: 

For the purpose of estimating the delay for vehicles at B, a cycle can be defined as the time 
difference between two consecutive departures of the pilot car from end B of the work zone. DBi 
should be displayed at the time of flagger closing B. When the flagger closes B, only TBDi and 
TBFi are known. This means that TBDi+1 needs to be estimated when the flagger closes B as the 
delay message at the end B of work zone should start when the flagger closes B. For the system 
to decide when to display the delay time, the system needs to know when flagger closes B. 

If the time when the flagger closes the traffic at B (TBFi) is known then DBi can be written in the 
following terms. 

 BFiBDiBi TTD −= +1  (6-3) 

Again, when the flagger closes the traffic, only TBFi is known; TBDi+1 will have to be estimated. 
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The algorithms for the estimation of wait times and cycle times for end B are the same as the 
ones for end A (i.e. mirror image of the process for end A). For simplicity, the algorithms are 
discussed only in terms of end A. 

This method has some limitations. 

• The time that the flagger closes the traffic at end A (TAFi) needs to be estimated if the 
need for real-time input by the flagger is to be eliminated. This calls for an accurate 
estimate of the number of vehicles arriving at each end when the traffic is closed at the 
corresponding end. 

• The departure time of pilot car from end A for cycle i+1 (TADi+1) needs to be estimated at 
the time when the flagger closes the traffic at A, and similarly for end B. 

• TADi+1 and TBDi+1 estimates may not be updated during a cycle if communication between 
ends A and B is not feasible 

6.2.2. Moving Average of Wait Times 

Unlike the general procedure just described, this method uses archived information on the pilot 
car’s operations to estimate future delay. One method is to estimate the cycle length based on the 
last i number of cycles. 

 ∑
=

+ =
i

j
jji CaC

1
1  (6-4) 

where aj = a weight for cycle j 
 Cj = cycle length for cycle j 

Another way of using the moving average is to average the actual wait times rather than the 
cycle times: 
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+ =
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AjjAi DaD

1
1  (6-5) 

Using notation for the time duration of the different states of the pilot car, the time when the pilot 
car will be leaving end A (TADi+1) can be measured as follows. 

 iiiiADiADi ABABABTT +++= ++1  (6-6) 

 iiiii ABABABC +++=  (6-7) 

The only value on the right side of the equation that is known with certainty at point A at all 
times during cycle i is TADi. Other values must be estimated and perhaps even updated with 
actual values as the pilot car progresses. When the processor at A needs to know the value of Ci, 
none of its components – ABi, Bi, BAi and Ai – are known. In the case where transmission occurs 
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only at the end points, then values will not be known until the car returns to A. However, in the 
case where transmission is continuous or even intermittent, these values could be updated with 
actual values when available. 

Delay for vehicles queued up at A: 

 AFiiAi TCD −=  (6-8) 

Delay for vehicles queued up at A: 

 BFiiBi TCD −=  (6-9) 

This methods also has some limitations. 

• The times that the flaggers close the traffic at ends A and B (TAFi and TBFi) need to be 
estimated if the need for real-time input from the flagger is to be eliminated. This calls 
for an accurate estimate of number of vehicles arriving at each end when the traffic is 
closed at the corresponding end. 

• The cycle length of cycle i (Ci) needs to be estimated at the time when the flagger closes 
the traffic at A, and it is the same for end B. 

• Parts of Ci may not be updated within a cycle if communication between ends A and B is 
not feasible. 

Four methods of moving averages were examined in this study. 

Wait Time from Last Cycle. In this method, the actual wait time for the cars for a current cycle is 
expected to be very similar to the immediate completed cycle. Using equation 6-5, ai = 1 and all 
of other weights are set to zero (i.e. a1 = a2 = a3 = a4 = …= ai-1 = 0). A limited comparison of the 
performance of this method over the other methods is discussed in the test results section of this 
chapter.  

Average of Last Ten Cycles. In this method, a simple average of the wait times from the last ten 
cycles is used as the estimated wait time for the current cycle. Ten cycles were chosen to 
represent a two-hour time period, with an average cycle length of about 12 minutes. In the 
moving average calculation, all of the weights are set to 0.1 (i.e. a1 = a2 = a3 = a4 = …= a9 = a10 = 
0.1). A limited comparison of the performance of this method over the other methods is 
discussed in the test results section of this chapter. 

Exponentially Decaying Weights for Last Ten Cycles.  

In this method, a weighted average of the wait times from the last ten cycles is used as the 
estimated wait time for the current cycle. Instead of equal weight given to all of the previous ten 
cycles, the weight exponentially decays as the cycles progress further into history.  
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In the moving average calculation, an = 1/20, an-1 = 1/21 (i.e. an = 1/2n-1 for n = 1-10). A limited 
comparison of the performance of this method over the other methods is discussed in the test 
results section of this chapter. 

Linearly Decaying Weights for Last Ten Cycles. 

In this method, as with the exponentially decaying weights method, a weighted average of the 
wait times from the last ten cycles is used as the estimated wait time for the current cycle. The 
weight linearly decays as the cycles progress further into history. 

In the moving average calculation, an = 1/1, an-1 = 1/2 (i.e. an = 1/n for n = 1-10). A limited 
comparison of the performance of this method over the other methods is discussed in the test 
result section of this chapter. 

6.2.3. Improved Moving Average of Wait Times 

The moving average methods discussed so far are confined to recent work zone operations (i.e. 
within the last two hours) and as such are relatively insensitive to the specific time of day. Could 
historical data on pilot car operations – such as consideration of the preceding day’s traffic – help 
to refine the wait time estimate? To answer this question, daily traffic data for a typical two-lane 
rural highway in Caltrans District 2 was obtained from Bella Vista on State Route 299 in Shasta 
County (ATR Station 213). A quick analysis of traffic in the two lanes supports one of the basic 
assumptions of this project that the traffic arrival rate can vary significantly between hours of a 
day. Figure 6-3 and Figure 6-4 show the variation of lane 1 and lane 2 traffic volumes for 
different hours of the day. The data used for these figures are for the days between December 14, 
2005 and January 17, 20061. These hourly volumes are traffic shown may be assumed to be 
representative of the traffic volume trends for two-lane rural highways.  

As can be seen from these figures, the hour of the day may provide valuable information to 
improve wait time estimates. Including the hour of day would not require human input, since this 
could be automatically available from the system clock of the delay estimation application2.  

Other useful information that can help to improve the wait time estimations is the day of the 
week. It has been established in traffic engineering that the traffic characteristics (e.g. peak hours 
of traffic) of Tuesdays, Wednesdays, and Thursdays are similar while the weekend traffic, 
Monday and Friday traffic are significantly different (8). This can also be seen in Figure 6-5. 
Each curve in this figure represents the hourly volume for one particular hour of the day. This 
data is for the same dates as Figure 6-3 and Figure 6-4 (i.e. from December 14, 2005 [Saturday] 
to January 17, 2006 [Tuesday]). 

 

                                                 
1 It should be noted that these dates include holiday (i.e. Christmas and New Year) traffic variations. 

2 It is assumed that the system clock is set to the appropriate time zone. 
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Figure 6-3: Lane 1 Traffic Volume Variations 
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Figure 6-4: Lane 2 Traffic Volume Variations 
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The hour of the day and day of the week information can be obtained from the system clock. A 
general peak hour trend (e.g. between 7 AM and 9 AM) may be established using regionwide 
traffic data for rural two-lane highways. (This may be investigated with additional data collection 
in the future). Using this information and time of day and day of the week from system clock, the 
following three trends of the traffic volumes can be established. 

• Increasing (leading up to the peak hour or pre-peak hour) 
• Flat (during the peak hour or during non-peak hours) 
• Decreasing (immediately post-peak hour) 

Once established, these trends can be used for verification and improvement of the moving 
average based algorithms. 

6.2.4. Other Methods 

This system is expected to be used at work zones that typically last for several days. This system 
is also designed to archive most of its operations. As more and more archived information for the 
same work zone is available, the following other methods may be useful. 
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Figure 6-5: Lane 1 Hourly Traffic Volume Variations with Day of the Week 
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• Time Series Approach. A time series is a set of observations at equally spaced time 
intervals. Time series are used to separate the general trends from “noise” and predict the 
future values of the variable observed. In the case of the system in this study, the unit of 
observation cannot be cycle lengths, as the intervals between cycles (i.e. cycle times) are 
not equally spaced. The appropriate unit of observation for the context of this study 
would be the average delay times for each hour for the work zone end of concern. The 
archived information from previous days and previous hours of pilot car operations at the 
same work zone can be fit into a time series. This will help identify trends that can be 
used for predicting the delay time for the next hour. The prediction for the next hour can 
be translated into the estimated delay time for the next cycle using an appropriate 
method. 

• Fourier Series Approach. Fourier series are generally used to solve arbitrary periodic 
functions by decomposing the function into simpler functions and solving for those 
functions. The results are then combined to solve the original function. Non-periodic 
functions can also be dealt with using Fourier approximations. For the delay estimation 
system, cycle lengths are expected to be periodic over one day. Therefore, this method 
may be used for multi-day work zone operations of the system. Since there will only be 
one lane available for traffic, it may be expected that this lane will have a few hours in 
the morning and few hours in the evening where the traffic volumes are close to peak-
hour traffic volumes. Therefore, the traffic arrival rate at the work zone may be able to be 
approximated by a Fourier series and modeled.  

• Markov Chain Approach. A Markov chain is a sequence of random variables (e.g. x1, x2, 
x3,…) with the property that the conditional probability distribution of the next future 
state xn+1 given the present and past states is a function of the present state xn alone. This 
approach may help improve the delay estimates as it accounts for the stochastic nature of 
traffic arrivals and disturbances to the pilot car movement through the work zones.  

Further research is needed to explore the applicability and subsequently develop algorithms 
using these methods. 

6.3. Testing of Delay Estimation Algorithms 

Laboratory-controlled testing of some of the above algorithms was performed. The research team 
was unable to identify off-the-shelf software that can readily simulate the pilot car operations in 
a two-lane rural highway work zone without extensive customization. Therefore, SimProcessTM, 
a software program used to simulate manufacturing processes, was used to simulate the pilot car 
operations and the traffic movement through work zones. A detailed description of the 
simulation model can be found in Appendix A. 

6.3.1. Simulation Analysis 

The traffic counts obtained from Bella Vista in Caltrans District 2 were used for this simulation. 
The start-up delay time for stopped vehicles at each end was assumed to be two seconds and the 



Evaluation of ITS Technologies in Rural Work Zones Delay Estimation and Computation 

Western Transportation Institute  46 

headway between vehicles while traveling through the work zone length was assumed to be two 
seconds. The length of the work zone was assumed to be two miles. 

Results 

Three simulation scenarios were run, and average wait time, queue length and travel time were 
calculated. Scenario 1 was run to cover traffic for 16 hours between 8 AM and 12 midnight with 
no warm up. Scenario 2 was run to cover traffic for 24 hours between 12 midnight and 12 
midnight with no warm up. Scenario 3 was run to cover traffic between 8 AM and 12 midnight 
with a 30 minute warm up. The estimates for average work zone travel time and average waiting 
time for each of the scenarios is shown in Table 2. 

Table 2: Results of Simulation Analysis 

These simulations are of relevance to subsequent research, because they show the viability of 
simulating algorithms for delay estimation. As shown later in this report, there are several 
prospective algorithms for estimation that base their predictions on prior delays. Using 
simulation would allow for a sufficient number of simulated tests to evaluate algorithm 
performance. There was not sufficient time to conduct algorithm simulation within the scope of 
this project. 

6.3.2. Lab-Controlled Testing 

The objective of this test was to perform a controlled laboratory investigation of the performance 
of a prototype work zone wait time estimation system designed by the WTI team. 

Functionality of the System Tested 

This system is designed for rural two-lane highway work zones where one lane is closed and the 
traffic is controlled by a pilot car. Waiting vehicles at each end are led by the pilot car through 
the work zone in turns (i.e. cycles). This system records time spans of each state of the pilot car 
in a cycle, archives the time spans of previous cycles, uses these time spans to estimate wait time 
for vehicles and displays the wait times and other relevant messages (e.g. pilot car approaching) 
in a dynamic fashion (i.e. the wait time is updated every two minutes). 

Methodology 

This test captured data to verify the features of the system listed in Table 3. 

Average Travel Time Average Wait Time
Lane 1 Lane 2 End A End B

Scenario 1 5:59 6:08 8:35 8:30
Scenario 2 6:16 6:15 8:15 8:15
Scenario 3 5:58 6:09 8:42 8:35  
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Table 3: Test Measures for Delay Algorithm Lab-Controlled Test 

Test Duration 

The test was conducted in the parking lot of the WTI building for eleven continuous cycles (22 
total trips between end points), with a total duration of 1.5 to 2 hours. The absence of waiting 
cars at each end was dealt with by randomizing the wait time of the pilot car at each end. To 
simulate a one-hour peak period of a typical two lane rural highway traffic, a Wednesday hourly 
traffic volume from the Bella Vista ATR station at 5 to 6 PM was used (219 vehicles in Lane 1, 
157 vehicles in Lane 2). 

Initialization 

The initial number of waiting cars at ends A and B was assumed to be 15 and 20, respectively. 
The length of the work zone was assumed to be approximately 0.5 miles. Based on this, an 
approximate cycle can be assumed to be 6 minutes, which was used to define the initial cycle 
time. For the initial cycle, the pilot car would wait approximately 60 seconds (15 vehicles × 4 
seconds per vehicle) at end B and approximately 80 seconds (20 vehicles × 4 seconds per 
vehicle) at end A. 

Estimation 

At the end of cycle 1, the actual cycle time was calculated by the system and was used to 
calculate the number of vehicles waiting at A and B in the following fashion (cycle times and 
wait times are in minutes): 

 1.5) to 0.5 (from no. randomB at time  waitlast - time cycle last  A at  waitingvehs. of no. ××=
60

219  

 1.5) to 0.5 (from no. randomA at time  waitlast - time cycle last  B at  waitingvehs. of no. ××=
60

158  

 

System Feature Measure of Effectiveness 
recording time spans actual time spans of pilot car states 

time spans of pilot car states as determined by the 
automated detection feature of the system 

archiving the time spans manual or automated count of number of test cycles 
estimation of wait times record of estimated wait times by the system while 

leaving each ends of the work zone 
actual wait times (calculated from the actual times of 
changes in pilot car states) 

displaying the wait time 
message  

record of wait time message by the system while 
leaving each end of the work zone 
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6.4. Results of Laboratory-Controlled Testing 

The controlled lab tests were performed, resulting in 11 complete cycles of data (22 complete 
trips between end points). The results of the testing indicating the cycle lengths and cars waiting 
at each end point for each cycle are shown in Table A- of Appendix A. The results are 
summarized in Table 4. 

Table 4: Summary of Cycle Lengths and Number of Cars Waiting. 

The proof-of-concept system equipment and technology worked without failure as expected to 
facilitate the estimation algorithms, as discussed in Section 5.6. Resulting time spans were output 
as a comma-separated-file and analyzed to evaluate overall system effectiveness according to the 
measures discussed in Section 6.3.2.  

Accuracy of Automated Time Interval Recording 

The system measured and recorded time intervals pertaining to the length of time the system 
remained in all states of a given cycle as per the automated state determination mechanism. In 
addition, the pilot car driver indicated, via the user interface, all actual arrivals to and departures 
from end points. A comparison of the actual cycle times, as indicated by the pilot car driver, and 
measured cycle times, as measured by the system, is in Table A- of Appendix A and 
summarized in Table 5. 

Table 5: Differences between Actual and Measured Cycle Lengths  

The results in Table 5 show that the discrepancy between actual cycle times and those measured 
by the system is low. The average difference is close to one second, which is quite small 
considering cycle lengths averaged 6½ minutes. This indicates that the system was recording 
overall cycle lengths well and was consistent with reality. Since the delay estimations are based 
largely on the overall cycle lengths, the results show that the system is capable of providing 
accurate inputs to the algorithms. 

Since each cycle length is comprised of the span of time spent in each of the four system states, a 
closer look at the component time spans is warranted. The actual time spans pertaining to all 

End Point A End Point B
Cycle 

Time(s)
No. of Cars 

Waiting
Cycle 

Time(s)
No. of Cars 

Waiting
Mean 390 17 390 13
Maximum 411 22 429 20
Minimum 355 9 362 7  

Measure (sec.) End Point A End Point B
Mean 1.09 1.27
Maximum 6 6
Minimum 0 0  
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components of the cycles appear in Table A- of Appendix A. The results are summarized in 
Table 6. 

Table 6: Summary of Time Span Results for Each Cycle Component 

Note that the actual time that the pilot car waits at end point B, on average, is longer than the 
pilot car wait time at end point A. The difference is due to the fact that the length of time that the 
pilot car remained at an end point is related to the number of cars behind the pilot vehicle at the 
time of arrival. Table 4 shows that there were more cars, on average, waiting at A than at B. 
Consequently the pilot car has to wait longer at B, on average, for the cars waiting at A to clear 
the work zone. Also, note that the trip times from A to B are very similar to those from B to A. 
This is expected since the trips are mirror images of each other. Also, there was not prohibitive 
traffic or other obstructions during testing.  

The difference between the actual values of the pilot car wait times at the end points and those 
measured by the system during testing are shown in detail for every cycle in Table A- of 
Appendix A. These results are summarized in Table 7. Note that these are not absolute values. 

Table 7: Summary of Differences between Actual and Measured Pilot Car Wait Times  

The test results in Table 7 show that at both A and B there is a difference between system 
measured and actual pilot car wait times. Furthermore, Table A- shows that, for each endpoint 
and in each cycle, the measured pilot car wait time span is greater than the actual pilot car wait 
time span. This consistent overestimation is likely due to the fact that the state determination 
mechanism uses a buffer zone surrounding the endpoint. Therefore, the system detects that the 
pilot car arrives at the point before the pilot car actually arrives. Similarly, the system detects that 
the pilot car departs the point after the pilot car actually departs. Measuring arrivals too early and 
departures too late results in a time span measured that is longer than reality, hence the test 
findings. 

Table 7 also shows that the difference between pilot car wait times at end point B is larger than 
that of end point A, on average, despite the fact that both end points use the same size buffer 
zone. This may be due to the fact that end point B resided in close proximity to several buildings. 
The pilot car driver indicated that the system detected arrivals and departures at roughly the same 
location every cycle for each endpoint. The initialization may have used a slightly errant GPS 
reading to set the location for end point B. Such an errant reading is possible due to the nature of 

State 1 State 2 State 3 State 4
Measure (sec.) At A From A to B At B From B to A
Mean 67.27 121.09 79.91 122.82
Maximum 89 127 98 127
Minimum 48 118 60 120  

Measure (sec.) Endpoint A Endpoint B 
Mean 7.82 16.82
Maximum 10 21
Minimum 6 15  
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the GPS device. The chance of the errant reading is increased at end point B because of the 
proximity to the buildings. As stated in Section 5.5, more work is required to determine the 
effect of obstruction on GPS readings and subsequent state determination. 

The difference between the actual values of the pilot car trip times between the end points and 
those measured by the system during testing are shown in detail for every cycle in Table A- of 
Appendix A. These results are summarized in Table 8. Note that these are not absolute values. 

Table 8: Summary of Differences between Actual and Measured Trip Times  

The test results summary in Table 8 show that there was a difference in measured versus actual 
trip times both from A to B and B to A. Table A- shows that the system consistently measured 
the trip times to be less than the actual trip times. Considering that the measured overall cycle 
lengths closely resembled the actual cycle lengths and that measured pilot car wait times were 
always larger than actual pilot car wait times, this is an expected result. Measured trip times are 
always less than actual trip times because the state determination mechanism consistently detects 
arrivals to end points too early and departures from end points too late. 

Overall, the limited laboratory tests showed that the system’s ability to record timestamps and 
calculate the associated time spans in response to system state changes is promising and worthy 
of further investigation. Measured cycle times were close to the actual cycle times. The 
individual components of the cycles differed from actual values in an expected manner due to the 
details of the state determination mechanism. GPS error due to the close proximity of one of the 
end points to a building may have caused an increased difference between actual and measured 
pilot car wait times for that end point. Differences in the state determination algorithm will likely 
have an effect on the accuracy of the measured cycle components. More rigorous testing of the 
system is needed to determine if measured values truly are accurate in all situations, as the 
limited nature of the tests does not provide enough evidence to support or refute the claim.  

Accuracy of Archiving 

The system was able to automatically count the number of cycles in real time and display the 
number to the pilot car driver via the user interface. In addition, the end point applications each 
kept track of the number of cycles. The values were monitored and verified throughout testing 
and were found to be accurate. Upon conclusion of the testing, the cycle counts in all system 
applications were consistent with reality. Furthermore, statistics concerning the timestamp when 
the cycle ended and times spans for all cycle components, both actual and measured, were 
archived in real time and verified after testing. The system appears to be able to successfully 
keep track of cycles and archive statistics for each cycle. 

Measure (sec.) A-to-B Trip(s) B-to-A Trip(s)
Mean -12.45 -13.54
Maximum -10 -11
Minimum -17 -19  
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Accuracy of Estimated Wait Times 

Throughout the controlled laboratory tests, the system estimated wait times for each cycle based 
on previous cycles alone. Four estimation methods, discussed in 6.2.2, were calculated and 
recorded simultaneously. As discussed in Chapter 6, the actual wait time for a given cycle 
consists of the cycle time minus the time span between when the pilot car leaves an end point 
and when the flagger closes the end point. This is the time during a cycle when cars cannot move 
through the work zone and must wait. The time span between pilot car departure and the flagger 
closing the end point is not known and, therefore, is estimated to be equal to the time that the 
pilot car waited at the other end point in the last cycle (which is related to the number of cars 
waiting during the previous cycle). Table A- of Appendix A shows the actual, measured and 
estimated wait times using the four estimation algorithms for all test cycles at end point A while 
Table A- of Appendix A shows the results for end point B. 

Table 9 shows a summary of the difference between the estimated wait times, derived from the 
four estimation algorithms, and the actual wait times at end point A, while Table 10 shows the 
same set of results at end point B. Note that these results are not absolute differences. 

Table 9: Summary of the Differences between Delay Estimation Algorithms, End Point A 

 

Table 10: Summary of the Differences between Delay Estimation Algorithms, End Point B 

The results in Table 9 and Table 10 show that wait time estimations performed similarly at both 
end points. The simple averaging of the last five cycles performed worst and deriving the wait 
time directly from the last cycle’s wait time performed best. Exponential and linear decay both 
offered improvements over the simple average algorithm but did not perform as well as the last 
cycle wait time algorithm. 

The results show that these algorithms were promising in that they provided relatively small 
average discrepancies between estimated and actual wait times. However, further investigation is 
necessary to determine the effectiveness of each algorithm in wait time estimation. While the 
average discrepancies appear promising, there is a substantial degree of variability among them. 
For instance, estimates at end point A were as far off as 83 seconds and estimates at end point B 

Measure (sec.) Last Cycle Simple 
Average

Exponential 
Decay Linear Decay 

Mean -12.5 -25.3 -17.6 -18.03
Maximum 76 53 57 56
Minimum -83 -83 -71 -72  

Measure (sec.) Last Cycle Simple 
Average

Exponential 
Decay Linear Decay

Mean -11.6 -21.1 -15.4 -16.0
Maximum 63 38 56 55
Minimum -105 -105 -105 -105  
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were as far off as 105 seconds. A more comprehensive set of test data is required to analyze the 
algorithms.  

Accuracy of Display Messages 

The message displayed on the sign was informally checked several times during the testing. 
Observations confirmed that the sign displayed the expected message. A more rigorous test of 
the display message is necessary to evaluate the accuracy of the display messages. Such a test 
would involve recording all sign messages and associated times during a laboratory test. Initial 
tests of the computer/sign interaction, however, seem to show that the sign appears to function as 
expected in all cases. 

Summary 

The controlled lab testing produced several promising results. The proof-of-concept system 
appears to be able to support estimation algorithms. Further refinement and research based on the 
findings in this test will likely result in a more robust, deployable system in the future. Similarly, 
results show that the use of these estimation algorithms to predict work zone wait times 
dynamically is reasonable. Further refinement and fine-tuning of these and other algorithms will 
likely result in a more accurate estimation system. 

6.5. Findings and Recommendations 

The results of this brief research into the delay estimation algorithms for a two-lane rural 
highway work zone with a lane closure are encouraging. Several methods to estimate the work 
zone delay were identified. The moving average algorithms were implemented and integrated 
into the proof-of-concept system. The algorithms were tested in a controlled laboratory test and 
with modeling software. The results of each of these testing methods were promising. 

The controlled laboratory tests evaluated the performance of the algorithms in the context of the 
proof-of-context system. The results showed that the system was able to support the algorithms 
by providing the proper inputs by accurately recording cycle times and the number of cycles. The 
system was able to properly manage the algorithm outputs by accurately displaying messages on 
the sign. Furthermore, given the proper inputs, the algorithms produced the expected delay time 
estimates. However, further investigation is necessary to determine the effects of inaccuracies of 
cycle components to the moving average and other estimation algorithms. 

Although implementation of the algorithms in the system is feasible, more work must be done to 
determine the effectiveness of the algorithms’ ability to estimate delay information. Further 
development on delay estimation using the other methods (Time Series, Markov Chain, and 
Fourier Series) is recommended. Development should include identifying traffic volume trends 
and their correspondence to times of the day or days of the week. Further investigation into the 
use of particular algorithms based on these factors is also recommended. Real data, or more 
rigorous field testing where possible, should be used to properly test the algorithms. It may not 
be possible for the delay estimation algorithms to be field-tested to the degree necessary to 
guarantee their performance in all circumstances. Therefore, it is recommended that the different 
algorithms be tested using extensive simulation. Even though off-the-shelf traffic simulation 
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software cannot simulate the pilot car operations in a two-lane rural highway work zone without 
extensive customization, the simple simulation model developed here shows that the pilot car 
operations can be simulated accurately using SimProcessTM.  
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7. COMMUNICATION TECHNOLOGIES 

7.1. Communication Technology Background 

There are a number of communication configurations that could be considered for this system. 
With each configuration, there are a number of technology alternatives. One configuration and 
technology (Wi-Fi in the pilot car and at the end points) was chosen for lab implementation and 
testing. This choice was made for practical reasons – there was a high chance of successful 
implementation using this configuration for lab testing within the limited timeframe of the 
project. However, other configurations should be considered for further testing and eventual 
production use, and analysis was conducted using several alternative technologies. Further 
testing and analysis would be necessary to implement these technologies, but sufficient 
information was gathered in this study to provide a general indication of what configurations and 
technologies may or may not be feasible. 

The general communication configurations that were considered include: 

• At End Points Only. The pilot car can communicate with the end points when in 
proximity. 

• At End Points and from End Point to End Point. The pilot car can communicate with the 
end points when in proximity and the end points can communicate with each other. 

• Complete. The pilot car can communicate with the end points from anywhere within the 
work zone and the end points can communicate with each other. 

These configurations are listed in order of increasing capability. Communication could be bi-
directional or unidirectional. 

7.2. Communication Technology Challenges 

The greatest challenges in terms of communication in this project stem from the System 
Communication Requirements and the System “Ease of Use” Requirements, as stated previously 
in this document. In general, the system must be operable in rugged terrain and rural areas, it 
shall require minimal setup, and it shall not depend on commercial communications services that 
have recurring service charges. Rugged terrain implies that line-of-sight or near-line-of-sight 
wireless technology will be of limited use. Rural use implies that existing communication 
infrastructure (public or private) will be limited and can not be assumed. The requirement of 
minimal setup further limits options, because certain technologies require careful positioning and 
configuration of equipment. Constraints are also imposed by power, because it can not be 
assumed that power is readily available. Finally, the requirement that the system not depend on 
commercial services eliminates options such as satellite, which would likely come closest to 
providing full coverage of rural areas. 
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7.3. Summary of Applicable Communication Technology 

Applicable technologies are broken into “wired” versus “wireless.” Wireless is further divided 
into licensed and unlicensed, and can also be categorized by network topologies. 

7.3.1. Wired 

Wired technology, i.e. running cable, was considered, but was determined infeasible for this 
project due to required setup time and potential problems in securing paths to run the cable. 
There may be applicability of wired communication for short runs between components, but 
wireless alternatives should be considered for all but the shortest runs. Wireless alternatives will 
provide the greatest flexibility and likely the easiest setup. It should also be noted that if the pilot 
car is to receive or transmit information, it could only do so using wireless technology. 

7.3.2. Wireless 

Technologies using licensed and unlicensed frequencies were considered in this project and 
further investigation of the alternatives would be necessary prior to production deployment.  

Licensed frequencies provide the greatest protection against interference. Frequencies in the 
licensed VHF and UHF bands are more conducive to non-line-of-sight propagation than 
frequencies in the unlicensed 900 MHz, 2.4 GHz and 5.8 GHz bands. However, licensed 
frequencies may not be available for this application. The availability of licensed frequencies 
will depend on location and availability within the Department. RF data modems were examined 
within the scope of this project using licensed frequencies in the 150 MHz range. 

The use of unlicensed frequencies is appealing because of the availability of numerous 
commercial off-the-shelf alternatives for components and technologies, and because it is not 
necessary to obtain a license for their use. Alternatives such as Wi-Fi and Zigbee were 
considered within this project and should be investigated further in subsequent phases to this 
project. The use of unlicensed frequencies must be carefully weighed against the potential for 
interference, and security must also be accounted for. Further investigation is necessary in this 
area. 

A number of wireless network topologies were considered within this project including: point-to-
point, multi-hop, point-to-multipoint and mesh, as well as fixed versus mobile transmission and 
reception. The System Communication Requirements and the System “Ease of Use” 
Requirements impose constraints that make many of the topology options challenging if not 
impossible to implement. For instance, point-to-point communication is severely impacted by 
terrain. Multi-hop, which uses a sequence of point-to-point nodes as repeaters, is challenging 
because of the number of nodes that would be required in rugged terrain and the challenge of 
determining placement for those nodes. Point-to-multipoint is appealing because of its simplicity 
and lower relative cost, but it is highly unlikely that such a configuration can be set up quickly 
and easily to work in a work zone in rugged terrain. Mesh suffers from the same challenges as 
multi-hop and the associated technology is relatively immature when compared to other 
technologies. 
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The technology and configuration used for the implementation within this project, Wi-Fi at the 
end points only, does appear to show promise. There are still a number of issues in regard to 
communication that deserve further investigation, including the suitability of using Wi-Fi. But, 
its use in lab testing is promising enough to say that at least one combination of technology and 
configuration can be made to work to achieve the goals of this project. 

7.4. Testing of Communication Technology 

Several tests of communication technologies were conducted in parallel within this project. 
Propagation studies were conducted to determine the propagation characteristics of various 
frequencies in rugged terrain. A literature review and vendor contacts were conducted to evaluate 
several technologies that are currently on the market. Lab and field testing were conducted with a 
commercial radio system that was optimized for use in rugged terrain. Lab/demonstration unit 
testing was conducted in the context of the lab/demonstration system. The approach to 
investigating communication technology lays the groundwork for subsequent study and 
development. 

7.4.1. Propagation Studies 

Four initial hypothetical work zone locations were identified for propagation analysis. These 
hypothetical work zone locations ranged from relatively flat, in which line-of-sight would likely 
be available throughout, to very rugged, in which line-of-sight throughout the entire work zone 
would be impossible and line-of-sight along the work zone would be significantly limited. 
Detailed analysis of a particular rugged area on State Route 70 between Oroville and Quincy at 
the Butte-Plumas county border (Figure 7-1) was conducted as a worst case or near worst case 
scenario. 
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Figure 7-1: Hypothetical Rugged Terrain Work Zone Location for Propagation Analysis 
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Figure 7-2 shows a 3D aerial view of this hypothetical work zone. Note that terrain causes 
obstructions throughout the work zone, particularly near the end points at the southwest and to 
the northeast. In addition to the end points, four intermediate points have been identified for 
analysis of coverage. The length of the test work zone is approximately 5 miles, and the test 
points are approximately one mile apart. 

From the southwest end point, labeled Case 1-1 West in Figure 7-2, line-of-sight is very limited, 
and none of the identified intermediate locations are visible, nor is the other end point, labeled 
Case 1-6 East in Figure 7-2. The predominant obstruction is the mountain to the northeast of 
point 1-1. The intermediate portion of the work zone containing points 1-3 and 1-4 has the 
greatest line-of-sight path, measuring approximately 1.5 miles. 

 

Figure 7-2: 3D View of Hypothetical Work Zone 
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Figure 7-3 shows propagation of a 900 MHz signal originating at point 1-1. Note that this signal 
may reach point 1-2, but will not reach subsequent locations including the far end point 1-6. 900 
MHz is considered near line-of-sight (NLOS), so this result is not surprising. 

 

 

 

Figure 7-3: 900 MHz Coverage from Point 1-1 – Start of Workzone 
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Figure 7-4 shows propagation of a 450 MHz UHF signal originating at point 1-1. Note that the 
UHF signal covers a greater area and the likelihood of coverage at Point 1-2 is increased, but the 
remaining test points and the majority of the work zone remain uncovered. The 450 MHz signal 
propagates better than the 900 MHz system and provides better non line-of-sight coverage, but is 
still not sufficient for extensive coverage of the work zone. 

 

 

 

Figure 7-4: 450 MHz UHF Coverage from Point 1-1 – Start of Work Zone 
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Figure 7-5 shows propagation of a 150 MHz VHF signal originating at point 1-1. Note the 
dramatic improvement in coverage over the 450 MHz and 900 MHz systems. However, this 
system does not appear to provide reliable coverage of the entire valley floor where the road, the 
work zone and the test points are located. Despite the dramatic improvement in coverage, the 
system appears to guarantee coverage only at point 1-2. Limited coverage may be available at the 
other test points, but it certainly can not be guaranteed. 

 

 

 

Figure 7-5: 150 MHz VHF Coverage from Point 1-1 
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Figure 7-6 shows propagation of a 150 MHz VHF signal originating at Point 1-6. This signal 
covers much of the work zone, but falls short of covering the end of the work zone near Point 1-
1. Note that a greater portion of the work zone is covered from this point. 

 

Figure 7-6: 150 MHz VHF Coverage from Point 1-6 
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Figure 7-7 shows propagation of a 150 MHz VHF signal originating in the middle of the work 
zone, at point 1-3. Coverage does not reach the ends of work zone near point 1-1 and point 1-6. 
Thus, it does not appear that a point-to-multipoint system could be implemented at a single point 
along the work zone to provide coverage of the entire work zone. 

Further investigation of technologies and scenarios should be conducted, but the propagation 
analyses reveal that it is highly unlikely that any system satisfying project requirements will be 
able to provide complete coverage of this work zone. End point-to-end point coverage under all 
circumstances, particularly within work zones in rugged terrain such as this, is highly unlikely. 
However, the scenario of communication between the pilot car and the end points when in 
proximity is not only achievable, but the project team was able to show reasonable success under 
this scenario in lab testing. This may be the only case under which we can demonstrate 
reasonable confidence in operation given the requirements associated with this project. 

 

Figure 7-7: 150 MHz VHF Coverage from Point 1-3 
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7.4.2. Literature Review and Vendor Contact 

Several prospective systems were reviewed in literature and through communication with 
vendors. These include:  

• Multi-hop using a system such as MeshDynamics multi-hop system, 
• Multi-hop using ZigBee (802.15.4); and 
• Point-to-multipoint using 900 MHz systems such as Trango Broadband or Motorola Canopy 

systems. 

It was determined that the multi-hop systems would be cost-prohibitive and would require too 
much set up time to make them feasible for use in a work zone. In rugged terrain, these systems 
would require an excessive number of repeaters to cover a work zone such as the hypothetical 
State Route 70 work zone. Generally, these systems operate on frequencies requiring line-of-
sight. Note however that such systems might be viable for the deployment of permanent 
communication infrastructure in such areas. In fact, they may be the only viable alternative in 
certain circumstances. Systems such as MeshDynamics could be used for this purpose. 

A novel multi-hop configuration was considered using a relatively new technology, ZigBee, 
which operates on top of the 802.15.4 standard. ZigBee is promoted as offering mesh capability 
and requiring minimal power in low-cost, compact devices. While ZigBee technology is just 
reaching the market and would require significant investigation for application to this project, 
one can envision a self-forming ZigBee network made up of ZigBee transceivers deployed 
throughout a work zone, perhaps in conjunction with traffic cones. Power could potentially be 
supplied by small solar panels, and the resulting network could provide coverage over the area in 
which cones are deployed. It should be noted that cones are not typically deployed to cover an 
entire work zone in which a pilot car is used. Thus, this system would not be feasible to provide 
complete communication coverage for a work zone. 

Point-to-multipoint technologies such as Trangobroadband and Motorola Canopy were also 
considered. These systems are appealing because their overall cost would be less than that of a 
multi-hop system. However, it is highly unlikely that a single point along a work zone could be 
selected for deployment of the central antenna array for such a system in rugged terrain. For the 
deployment of permanent communication infrastructure in such areas, these systems might prove 
viable, particularly if equipment could be deployed at high points above the road way. Other 
issues with these systems include questions as to whether or not they could be used for mobile 
communication. 
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7.4.3. Lab and Field Testing 

A pair of Microwave Data Systems MDS 1710 transceivers (Figure 7-8) were field tested in the 
Gallatin Canyon along US Route 191 south of Bozeman, Montana. This area is characterized as 
rugged terrain, and is similar to many areas in northern California, particularly the State Route 
70 hypothetical work zone. The objective was to field test the performance of a VHF system in 
rugged terrain. The transceivers were configured to operate in the 150 MHz range using 
asynchronous simplex mode. One transceiver was configured to transmit and the other was 
configured to receive. Two-way half-duplex communication is possible with these units, but was 
not used during this test. 

Each transceiver was configured in separate vehicles. The transmitter vehicle was parked in a 
pullout along US Route 191 and the receiver vehicle was driven nearly 10 miles to the south 
through the canyon. Note that real use would either involve transmission from the moving 
vehicle or two-way communication. However, it was easier to log signal strength and monitor 
reception with the given configuration, and it is reasonable to assume that signal strength would 
be similar to that of normal use. 

Notebook computers were used to automate transmission and reception of data. The receiving 
vehicle computer was configured to read and record signal strength (RSSI) directly from the 
transceiver. These readings were recorded with latitude and longitude as automatically read from 
a GPS within the vehicle. 

 

Figure 7-8: MDS 1710 Transceivers 
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This system was chosen as representative of a best case for a mobile system requiring minimal 
setup. Setup, aside from prior configuration of modems for frequency, power and transmission 
mode, involved connecting the modems to power, external magnetic mount antennas, and the 
computers. See Figure 7-9, Figure 7-10, Figure 7-11 and Figure 7-12 for pictures from the field 
test. 

 

Figure 7-9: Stationary Transmitter 
Vehicle at US 191 Pullout 

 

 

Figure 7-10: Transmitter and Computer 

 

 

Figure 7-11: Receiver Vehicle and 
Southbound US 191 

 

 

Figure 7-12: Receiver and Computer 
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Propagation characteristics for the 150MHz data modems were anticipated to be good, but still 
limited by terrain. Figure 7-13 shows a propagation map for the Gallatin Canyon test area, with 
transmission from the pullout. 

The test route, shown in purple, is approximately 13 miles in length. Note that coverage is 
predicted approximately 3 miles along US 191 from the pullout. 

A drive test was conducted along approximately 11 miles of the route, as shown in Figure 7-14. 
The end of this drive test was approximately eight miles direct distance from the transmission 
point. Received Signal Strength Indication (RSSI) was recorded from the receiving vehicle while 
moving continuously along this route. RSSI is indicated by color-coded points in Figure 7-14.  

 

Figure 7-13: Propagation Map for 150 MHz VHF South of Transmitter 
Legend: 
 Red = excellent (20 dBu and above) 
 Yellow = good (10 dBu and above) 
 Green = acceptable (0 dBu and above) 
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Note that the points were color-coded using a scale modified from that of the original 
propagation analysis. Data transmission was manually observed, and the modified scale was 
derived to correspond to observations of data reception quality. 

 

Figure 7-14: Observed RSSI Alongalong US 191 South of Transmitter 
Legend: 
 Red = excellent (0 dBu and above) 
 Yellow = good (-20 dBu and above) 
 Green = acceptable (-30 dBu and above) 
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Data communication was good along the first three miles of the route and dropped off 
significantly thereafter. Figure 7-15 shows a three-mile radius around the test transmission point. 

 

Figure 7-15: Three -Mile Radius from Transmitter 
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Figure 7-16 shows the degradation of service at three miles from the transmitter. Note that 
service was observed beyond this point, but not at a reliable level. In fact, data was received at a 
point beyond five miles from the transmitter, but reception was not reliable. 

 

Figure 7-16: Degradation of Signal at 3 Miles 
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Figure 7-17 shows the same area three miles from the transmitter from a different view point. 
Note how the propagation map predicts the impact of terrain on this location. The two mountain 
ridges shadow the area beyond the three mile point, causing signal strength to reduce 
dramatically. 

 

Figure 7-17: Obstruction of Signal Due to Terrain at 3 Miles 
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7.4.4. Lab/Demonstration Unit Testing 

Communication equipment was tested in the lab and in the demonstration system. This 
equipment is discussed in further detail earlier in this report. The configuration used for lab 
testing is shown in Figure 7-18. In this configuration, communication is only available at the end 
points and is provided using Wi-Fi / 802.11. Under this scenario, communication is established 
in proximity of 802.11 routers at the work zone end points. (The radius in which communication 
can occur may vary dependent on terrain and equipment power, but should be of sufficient 
magnitude for this application regardless.) 

 

Figure 7-18: Lab Communication Scenario 

A D-Link DI 634 108G MIMO Router (Figure 7-19) was used at the end point. Integrated 802.11 
capability within the notebook computer was used for transmission and reception within the pilot 
car. Excellent performance was observed. It must be noted that this configuration was chosen for 



Evaluation of ITS Technologies in Rural Work Zones Communication Technologies 

Western Transportation Institute  73 

lab testing only, and that environmental considerations must be taken into account for production 
use. Rugged equipment would be necessary for field deployment. 

Several additional components were used for lab testing. A MaxStream XBee-PRO ZigBee 
802.15.4 RS-232 RF Modem (Figure 7-20) was used to transmit RS-232 communication via 
wireless from a control computer to one of the signs. This device proved to be very effective for 
this purpose. Informal observations indicated that the device was capable of covering a greater 
distance than the wireless router. Such a device might be used for transmission between a 
controlling computer and a sign if they can not be collocated. It could also be considered as a 
possible replacement for the wireless router, although communication capability and bandwidth 
would be limited greatly when using RS-232.  

 

Figure 7-19: D-Link DI 634 108G MIMO Router 
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A Digi PortServer TS-4 (Figure 7-21) was used to provide serial over Ethernet capability, linking 
the sign to the wireless router. This device worked well for this purpose. 

 

Figure 7-20: MaxStream XBee-PRO ZigBee 802.15.4 RS-232 RF Modem 

 

Figure 7-21: Digi PortServer TS-4 
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Further investigation of these components and other alternatives would be necessary to 
determine the best technologies for a production implementation and field deployment. 

7.5. Findings and Recommendations 

Our propagation studies and corresponding field tests indicate that it would be difficult if not 
impossible to implement a system that satisfies project requirements for minimal setup and 
provides continuous communication from end point to end point in rugged terrain. It is also 
unlikely for the same reasons that such a system could provide communication from end point to 
end point.  

Success was achieved in implementing a system in which communication between the pilot cars 
and signs occurs in proximity to the signs. Results shown in prior sections indicate that this 
approach may truly be viable for a production system. 

Further investigation into communication alternatives is recommended as a follow up to this 
project. There are a number of reasonable alternatives, each with positive and negative aspects. 
The low cost and availability of Wi-Fi equipment makes its use appealing. However, its use of 
unlicensed spectrum raises concerns about security and the potential for interference. These 
issues can be addressed by using licensed frequencies, but corresponding equipment is more 
expensive and it may be difficult to obtain license and permission to use these frequencies. VHF 
and UHF frequencies have better propagation characteristics in rugged terrain, and could 
potentially improve accuracy of the system. However, these frequencies are licensed as well. 

In addition, significant further investigation is necessary to make such a system field-ready. 
Hardened components capable of operation in extreme temperature would be necessary. 
Integration of communication components with other components would have to be considered, 
as would provisions for power. 
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8. SUMMARY AND RECOMMENDATIONS 

8.1. Proof-of-Concept System Results 

A proof-of-concept system was developed that demonstrates the viability of a work zone delay 
estimation and display system. The system uses communications and computing hardware and 
separate software applications in the pilot car and at the signs. In controlled lab testing, all 
components of the system performed properly. 

Equipment and technology was evaluated and integrated to create the proof-of-concept system. 
This equipment proved successful in lab testing. Further research and development will be 
necessary in order to prepare equipment for field testing and ultimately for production use. 

Multiple delay estimation algorithms were identified, researched and tested for prospective use 
within the system. These delay estimation algorithms were implemented in the proof-of-concept 
system, proving that the system can support these and other similar algorithms. Further research 
and development is necessary in order to determine the best algorithm(s) for field testing and 
production use. 

Communication alternatives were identified and tested for use in rugged terrain. While a number 
of alternatives, including the Wi-Fi configuration used in the proof-of-concept showed promise 
for use in the system, it was determined that it is highly unlikely that any communication 
technology would be able to provide complete communication coverage throughout every work 
zone. Further investigation into communication technologies and configurations is necessary in 
order to determine the most viable alternatives for field testing and production use. 

8.2. Necessary Subsequent Research 

8.2.1. Equipment and Technology Research Needs 

Further research should be conducted to explore other possible hardware and software 
configurations – other than notebook computers. Notebook computers were sufficient for rapid 
development and testing, but likely would not be suitable for production use. Rugged, field-ready 
equipment must be chosen to withstand extreme temperatures and minimize the possibility that 
cables become disconnected. It should be taken into account when doing this that the system will 
likely need to remain portable for use within pilot cars; i.e., permanently mounting the system 
within pilot may not be an option. Instead, the system might come in a briefcase, in which 
components can rapidly be connected to power, and antennas can be quickly and easily mounted.  

For components used in conjunction with signs, further investigation will be necessary to 
determine whether these components can and should be attached directly to the signs or whether 
they should operate separately from the signs, perhaps with a wireless connection to the signs. 
For instance, the controller might operate as another briefcase within a vehicle that 
communicates via wireless with a receiver attached to a sign. Alternatively, the controller might 
also be attached to the sign. It was not possible within the scope of this project to determine 
which, if either, of these configurations was optimal. Power constraints and the likelihood that a 
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vehicle or trailer could be parked in the right location to house this functionality need to be 
considered further. 

In conjunction, there is a need to further determine the user interface requirements and 
limitations. A goal of this system is to minimize human interaction and maximize automation. 
However, there are certain tasks that appear to require manual input such as indicating the 
starting and ending points of the work zone. This could be accomplished in a variety of ways 
other than using the GUI that was used on the notebook computer. Indicating/determining when 
traffic has been closed in one direction by the flagger may also be an issue that requires user 
input. Further investigation is necessary to determine if the wait time at the other end of the work 
zone is a sufficient proxy for this measure, eliminating the need for this input. 

State determination requires accurate GPS input in the proof-of-concept system. It may be the 
case that GPS performance degrades to an unacceptable level in rugged terrain, particularly with 
dense foliage and obstruction of the sky. Further estimation should be conducted to determine 
the impact and severity of degradation in these circumstances. If the impact is determined to be 
severe enough to affect system performance, then alternatives should be investigated. There are a 
number of assisted GPS (AGPS) alternatives that could be considered, as could other RF 
triangulation methods that do not require a clear view of the sky. 

There is a need to test the system with signs that are regularly used by Caltrans and other 
agencies in the field. Tests were successful with lab signs, and research was conducted into 
protocols and interfaces used by field-ready signs. A logical next step would be to test the system 
with such field-ready signs and to enhance the controller application to interface with as many 
such signs as possible. 

Similarly, the possibility that multiple signs are used at each of the end points, in sequence, 
should be explored further. Inherent in this configuration is the challenge of relaying information 
to multiple signs using communication technology. It should also be noted that the sign may not 
be located at the work zone end point, and instead located some distance from the work zone and 
flagger. Providing communication to control that sign could be a challenge.  

In the future, remote posting of real-time delays on the traveler information web pages might 
also be explored. This information would be beneficial to the public and other public safety 
organizations. Note that this capability would require further investigation into communication in 
order to effectively transmit this information to the web and other servers necessary for 
presenting that information to the public. The communication systems considered for operation 
within the work zone within this project have largely been considered local area networks within 
the work zone, with no need to transmit information to or receive information from the outside. It 
may be necessary to consider commercial providers such as cellular and satellite or consider 
existing public safety communications infrastructure for this purpose. 

Finally, it should be considered whether or not other, related technology will be deployed in pilot 
cars and/or in the work zone. It may be possible to develop integrated systems that serve a 
number of applications rather than having separate systems for each. Further investigation would 
be necessary to determine which alternative is best, depending on the applications. Integration 
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could be beneficial, but it could also unnecessarily tie this system to another system, 
complicating deployment and use. 

8.2.2. Delay Estimation and Computation Research Needs 

The different algorithms that are presented here have their strengths and weaknesses. Some of 
the algorithms perform better in some traffic conditions than the other algorithms. Due to time 
limitations, it was not possible to compare and contrast these algorithms. As explained earlier, 
the traffic arrival rate and the traffic arrival trend (i.e. the change in the rate) vary and it may be 
possible to design the system such that the system picks the best suited algorithm based on the 
current traffic arrival trend. Further research is needed to verify this concept and to develop an 
algorithm that will select the appropriate delay estimation method.  

Further testing with simulation should be conducted to evaluate algorithm performance. Real 
traffic counts should be used where possible. The presence of trends or anomalies (sudden spikes 
or drops) in data as well incorporating events to represent the influence of work zone operations 
on traffic flow should all be incorporated into testing. Simulation provides a means to test a large 
number of such scenarios and events that otherwise might not be feasible due to time and budget 
limitations in field-testing. 

8.2.3. Communication Technologies Research Needs 

In order to guarantee robust operation in the field, further investigation of 802.11 and alternatives 
will be necessary. Obvious concerns about the use of 802.11 and other technologies that operate 
on unlicensed spectrum are the potential for interference and security problems. It should be 
determined with certainty to what level these concerns can be addressed before deploying such a 
system for production use.  

Technologies using licensed spectrum showed promise for providing better communication 
coverage of the work zone. These technologies should be further investigated and evaluated to 
determine if they are viable alternatives to 802.11. There may be challenges in securing 
frequencies for system use, and equipment will certainly be more costly and perhaps less flexible 
than 802.11. However, such systems would minimize the potential for interference and would 
exhibit better propagation characteristics. Thus, they should be investigated further. 

8.3. Recommendations 

It is recommended that subsequent research and development be conducted as outlined in prior 
sections to:  

• Prepare system equipment and technology for field use 
• Evaluate and optimize algorithms to best fit actual traffic patterns including trends and 

anomalies 
• Determine the best communications technologies and configurations for deployment 

The system developed within this phase of the project is a “proof-of-concept” system, intended 
to facilitate lab testing and to demonstrate the potential feasibility of such testing. The system is 
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not ready for field-testing or production use. The system is considered to be at Stage 2, the 
Laboratory Prototype Stage, of the Caltrans Stages of Research Deployment. Further research 
and development will need to be conducted to lead system development and deployment through 
Stages 3-5, preparing the system for production use. In this report, we have outlined prospective 
subsequent research and development as recommendations for that purpose. 
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APPENDIX A: CONTROLLED LAB TEST RESULTS 

Table A-1: Actual Cycle Times and Number of Cars Waiting for Each Cycle  

Cycle # Actual Endpoint A 
Cycle Time (s) 

Cars Waiting at A Actual Endpoint B 
Cycle Time (s) 

Cars Waiting at B 

1 398 22 429 20 
2 410 22 395 14 
3 394 20 368 14 
4 355 20 377 10 
5 402 9 420 10 
6 404 9 362 7 
7 369 18 408 7 
8 411 18 388 13 
9 368 22 377 13 

10 408 22 390 12 
11 370 12 377 12 

 

Table A-2: Actual and Measured Cycle Times for Each Cycle 

Cycle 
# 

Actual Cycle 
Time for A 

(s) 

Measured Cycle 
Time for A (s) 

Difference at 
A (s) 

Actual Cycle 
Time for B 

(s) 

Measured cycle 
Time for B (s) 

Difference at 
B (s) 

1 398 392 6 429 423 6 
2 410 410 0 395 397 2 
3 394 394 0 368 367 1 
4 355 355 0 377 377 0 
5 402 402 0 420 419 1 
6 404 403 1 362 363 1 
7 369 370 1 408 408 0 
8 411 412 1 388 386 2 
9 368 367 1 377 378 1 

10 408 408 0 390 390 0 
11 370 372 2 377 377 0 
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Table A-3: Actual Pilot Car Wait Times and Travel Times for Each Cycle 

Cycle # Actual PC Wait 
Time at A (s) 

Actual PC Wait 
Time at B (s) 

Actual AB Trip 
Time (s) 

Actual BA Trip 
Time (s) 

1 89 98 126 120 
2 65 84 123 124 
3 64 62 122 124 
4 48 83 118 127 
5 78 94 120 121 
6 61 60 127 122 
7 63 98 119 127 
8 74 76 120 120 
9 54 83 118 120 

10 79 66 120 126 
11 65 75 119 120 

 

Table A-4: Actual and Measured Pilot Car Wait Times for Each Cycle 
Cycle # Actual PC 

Wait Time 
at A (s) 

Measured 
PC Wait 

Time at A 
(s) 

Difference 
(Measured 

– Actual) (s)

Actual PC 
Wait Time 

at B (s) 

Measured 
PC Wait 

Time at B 
(s) 

Difference 
(Measured 

– Actual) (s)

1 89 96 7 98 118 20 
2 65 73 8 84 105 21 
3 64 71 7 62 78 16 
4 48 56 8 83 100 17 
5 78 86 8 94 111 17 
6 61 68 7 60 76 16 
7 63 71 8 98 115 17 
8 74 83 9 76 91 15 
9 54 60 6 83 98 15 

10 79 87 8 66 82 16 
11 65 75 10 75 90 15 
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Table A-5: Actual and Measured Pilot Car Trip Times for Each Cycle 

Cycle # Actual AB 
Trip Time (s) 

Measured 
AB Trip 
Time (s) 

Difference 
(Measured – 
Actual) (s) 

Actual BA 
Trip time (s)

Measured 
BA Trip 
Time (s) 

Difference 
(Measured – 
Actual) (s) 

1 126 109 -17 120 101 -19 
2 123 108 -15 124 111 -13 
3 122 108 -14 124 110 -14 
4 118 108 -10 127 113 -14 
5 120 108 -12 121 108 -13 
6 127 114 -13 122 110 -12 
7 119 109 -10 127 114 -13 
8 120 108 -12 120 106 -14 
9 118 106 -12 120 109 -11 

10 120 109 -11 126 113 -13 
11 119 108 -11 120 107 -13 

 

 

Table A-6: Actual, Measured and Estimated Delay under Four Estimation Algorithms 
(End Point A) 

Cycle 
# 

Actual 
Delay at 

A (s) 

Measured 
Delay at A (s) 

Delay at A 
From Last 
Cycle (s) 

Simple Average 
Delay at A (s) 

Exponential 
Decay Delay 

at A (s) 

Linear Decay 
Delay at A (s)

1 398 392 X X X X 
2 324 324 392 392 392 392 
3 275 276 324 358 346 347 
4 249 250 276 330 306 306 
5 323 324 250 310 276 276 
6 303 303 324 313 300 301 
7 258 259 303 295 300 301 
8 335 336 259 282 278 279 
9 253 252 336 294 308 308 
10 317 317 252 294 280 280 
11 271 274 317 293 298 298 
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Table A-7: Actual, Measured and Estimated Delay under Four Estimation Algorithms 
(End Point B) 

Cycle 
# 

Actual 
Delay at B 

(s) 

Measured 
Delay at B 

(s) 

Delay at B 
From Last 
Cycle (s) 

Simple Average 
Delay at B (s) 

Exponential 
Decay Delay 

at B (s) 

Linear Decay 
Delay at B (s) 

1 410 404 X X X X 
2 299 301 404 404 404 404 
3 295 296 301 352 335 335 
4 306 306 296 333 311 313 
5 364 363 306 326 308 309 
6 276 277 363 333 336 337 
7 340 340 277 308 304 305 
8 317 315 340 316 323 323 
9 294 295 315 320 319 319 

10 329 329 295 318 307 307 
11 290 290 329 311 317 317 
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APPENDIX B: TRAFFIC SIMULATION ANALYSIS 

B.1 Overview of SIMPROCESS 

Computer models are widely used in traffic and transportation system analysis. In this project, a 
work zone traffic simulation model was created using the SimProcessTM simulation tool to study 
the actual traffic flow patterns at the work zone and to estimate the traffic delay under certain 
circumstances. SimProcess is a hierarchical and integrated process simulation tool. It provides a 
fast, flexible, and easy-to-use platform for developing, analyzing, and visualizing dynamic 
simulations and has been widely used for process and discrete-event simulation. 

B.2 Work Zone Description / Traffic Conditions 

In order to estimate work zone traffic delay, a hypothetical construction site is assumed on a two-
lane segment of rural highway. It was assumed that the roadway maintenance work requires the 
closure of one lane for two miles, with the remaining one lane open to traffic.  

It is more accurate and beneficial to simulate with the real traffic data. Therefore, traffic data 
from one day (January 4, 2006) at Caltrans’ Bella Vista station was used to simulate the average 
vehicle approaching rate. The traffic flow distribution is shown in Table B-1 and Figure B-1. The 
average pilot car speed in the work zone is assumed to be 20 mph. The maintenance activities 
will be simulated over a period of 16 hours (from 8 am to 12 midnight) or 24 hours (from 
midnight to midnight), during which the pilot car is assumed to be working all day without 
interruption. For the 8 am to 12 midnight simulation period, it is assumed that at the each end of 
work zone A and B, there are already 20 vehicles waiting at 8 am. 
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Table B-1 Bella Vista Station TR data 
Date Hours Lane 1 Lane 2

01/04/06 0 14 10
01/04/06 1 3 3
01/04/06 2 1 9
01/04/06 3 13 5
01/04/06 4 13 9
01/04/06 5 32 24
01/04/06 6 69 91
01/04/06 7 132 215
01/04/06 8 108 169
01/04/06 9 88 165
01/04/06 10 107 173
01/04/06 11 97 176
01/04/06 12 138 124
01/04/06 13 156 150
01/04/06 14 221 172
01/04/06 15 182 145
01/04/06 16 191 120
01/04/06 17 212 136
01/04/06 18 124 108
01/04/06 19 76 45
01/04/06 20 62 39
01/04/06 21 38 25
01/04/06 22 42 14
01/04/06 23 22 6  
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Figure B-1: Traffic Flow Rate over Time 
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B.3 Methodology 

The general logic of the work zone model (shown in Figure B-2) is based on the discrete event 
simulation principle as well as the building blocks of the SimProcess program.  

Two ends of the work zones are named A and B. The pilot car is treated as an entity in the 
model. Only one pilot car is created at the beginning of the simulation period at START A site, 
and will shift between FLAGGER A and FLAGGER B stations. The arriving vehicles from 
each direction (lane 1 and lane 2 from the Caltrans traffic data) are also treated as entities in the 
model and are generated at START A and START B and leave at END B and END A 
respectively.. 

To simulate the vehicles passing through work zone guided by a pilot car and two flaggers, 
FLAGGER A and FLAGGER B stations are modeled as gate blocks in the simulation model. 
All vehicles approaching work zone will wait at FLAGGER A or FLAGGER B stations. Once 
the pilot car and all the following vehicles pass through FLAGGER A or B, all the vehicles 
waiting at FLAGGER A or FLAGGER B will be released. The work zone travel time for each 
vehicle is defined as the time to move from two miles with a 20 mph speed plus an additional 
four seconds to startup from a full stop to a speed of 20 mph and then move into the work zone. 

The vehicle arrival rate and the work zone travel time are assumed follow the uniform (0.5, 1.5) 
distribution. 

B.4 Analysis and Results 

Three different scenarios are studied based on different simulation period and warm up time. 
Each scenario is simulated using the model defined above and runs with ten iterations. At the end 
of the each simulation run, a statistics report was generated showing the average waiting time at 
FLAGGER A and B, the average travel time in work zone, the average queue length at 
FLAGGER A and B. The three scenarios are labeled as follows:  

1. 8 am to 12 midnight, with no warm-up 

 

Figure B-2: Work Zone Simulation Model 
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2. 12 midnight to 12 midnight, with no warm-up 
3. 8 am to 12 midnight, with 30 minutes warm-up 

The results are shown in Table B-2. 

 

Table B-2: Simulation Results 

Waiting Time (min) Queue Length Travel Time (min) Scenario 
Flagger A Flagger B Flagger A Flagger B Lane 1 Lane 2 

1 8.588 8.506 17 16 5.978 6.134 
2 8.255 8.248 13 12 6.273 6.253 
3 8.705 8.588 17 16 5.968 6.143 
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APPENDIX C: COMMUNICATIONS ANALYSIS 

By Dr. William J. Jameson 

As a means of estimating the relative effectiveness of potential RF solutions to communication 
of the pilot car’s location to the traffic message signs at the ends of a highway maintenance 
project, we have conducted a number of propagation studies. These studies include three options 
using VHF hi-band (150 MHz) and one each using UHF (450 MHz) and 900 MHz. Studies were 
conducted over four sets of terrain, two with highly irregular terrain (mountainous), one of 
moderate irregular terrain and one of relatively flat terrain. Over the last two terrain samples, all 
of the options appeared to be satisfactory. The first two had similar results relative to all options. 
Hence, we shall concentrate this report on the first study, referred to as Test 1. 

For the VHF studies we used a receiver sensitivity of 0 dBu, a rather conservative figure. 
(Typically, current systems operate with a receiver sensitivity of approximately -10 dBu.). On 
the other hand, for the UHF and 900 MHz systems we used state-of-the-art RF modem systems 
for the comparison. System parameters for the three frequency bands were: 

1. VHF (e.g., Data Radio Integra, Kantronics Talon UDC VHF or MDS1710 RF modem) 
a. RX Sensitivity – 0 dBu 
b. TX power in Pilot car – 5 W 
c. RX antenna gain at information sign - 3 dB 
d. RX antenna height at information sign – 6 ft 

2.  VHF hi-gain 
a. RX Sensitivity – 0 dBu 
b. TX power in Pilot car – 10 W ERP 
c. TX gain in Pilot Car – 3 dB 
d. RX antenna gain at information sign – 9 dB yagi 
e. RX antenna height at information sign – 10 ft  

3.  VHF 3dB 
a. RX Sensitivity – 0 dBu 
b. TX power in Pilot car – 10 W ERP 
c. TX gain in Pilot Car – 3 dB 
d. RX antenna gain at information sign – 3 dB 
e. RX antenna height at information sign – 6 ft  

4.  UHF (Data Radio Gemini RF modem with space diversity antenna) 
a.  RX Sensitivity – -56 dBu 
b.  TX power in Pilot car – 25 W ERP 
c.  RX antenna gain at information sign – 15 dB 
d.  RX antenna height at information sign – 10 ft  

5.  900 MHz (Motorola Canopy system) 
a. RX Sensitivity – -30 dBu 
b. TX power in Pilot car – 4 W ERP 
c. RX antenna gain at information sign – 10 dB 
d. RX antenna height at information sign – 10 ft 
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Another possible option would be a mesh network. Mesh stations act as network repeaters, which 
could be a significant advantage. Unfortunately, typical mesh networks sites have a point-to-
point range of one mile or less, due primarily to their frequency band (typically 2.4 GHz). For 
Test 1 several mesh sites would be required along the test path, probably seven or eight and 
possibly more. Although such site stations could probably be set up in a battery powered “cone”, 
the time required to set them up (and the RF technical background of the staff individual who 
sets them up), as well as the cost of multiple units, might make them less than desirable. 

Test 1 was based on an approximately five mile stretch of State Route 70 near Redding. At the 
end of this appendix are five location comparisons of relative system coverage of the five system 
approaches. The “location” of a pilot car for each of the five comparisons is listed beneath the 
plot (e.g. for “Test 1-3 UHF” the pilot car is located at the point marked Test 1-3). For each 
location, one needs to look at whether or not the Test 1 end is covered by a color (red, yellow or 
green). If so, the location will be adequately covered by the pilot car’s RF signal. The color red 
indicates exceptional coverage (very high field strength); yellow indicates good coverage and 
green indicates acceptable coverage. We note that all three of the VHF options provide 
reasonable or good coverage at the end point (at least green for most or all of the pilot car sample 
points). Note, however, that neither UHF nor 900 MHz have any yellow or green coverage areas. 
This is due to their respective line-of-sight limitations – coverage is excellent out to the point 
where line-of-sight is restricted by terrain. In reality, the performance of the UHF and 900 MHz 
options was excellent considering the terrain. 

The propagation studies do not address possible interference on unlicensed frequencies 
(interference analysis requires knowledge of the location of all interfering sites). Except, 
perhaps, in heavily populated areas, it doesn’t seem likely that this would be a significant factor.  

For the three VHF systems an RF modem (e.g., Data Radio Integra @ $1,700 or MDS1710 @ 
$1,1003) is a relatively simple approach. It connects directly to a driving device (e.g. laptop). For 
the UHF option a higher power RF modem would be required (e.g. Data Radio Gemini @ $3,350 
– also includes GPS receiver). It, too, connects directly to a driving device. The 900 MHz (based 
on Motorola Canopy) option may not be satisfactory for mobile use as it is designed for point-to-
point operation. Since the subscriber unit and the hi-gain antenna (60o beam width) are fairly 
compact, however, it may be possible to mount a system on a pilot car relatively easily. Whether 
or not it will operate in a mobile mode needs to be determined. The access antenna should be 
easily mounted on the traffic information sign. 

C.1 Equipment Testing 

We were able to do extensive highway testing with two MDS 1710 RF modems operating on 
151.805 MHz; one served as the transmitter (pilot car), the other served as the receiver site. The 
tests were conducted on US Route 191 in the Gallatin Canyon, very irregular terrain in the 
Gallatin Range. Before the tests, we performed a propagation study that allowed us to choose an 
appropriate section of highway for the tests. The tests actually performed slightly better (over the 

                                                 
3 List prices. The MDS1710 could be obtained for $979 per unit in reasonable quantities. 
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entire test run) than we anticipated from the propagation study. (Approximately 42 percent of the 
test run had adequate coverage, whereas approximately 40 percent of the Run was within the -30 
dBu coverage estimates.) We suspect that this may be due in part to ducting along the Gallatin 
River, which lies within a few hundred feet of the highway for most of the Test Run. Figure C-1 
and Table C-1 demonstrate the test results. 

C.2 Conclusions 

• Highways in regions with highly irregular terrain: In such areas it would appear that a 
licensed VHF hi-band frequency system would be most viable. The VHF system with a 3 
dB gain mobile antenna at both the end points and pilot car would seem to be a relatively 
logical approach. (Mounting a 9 dB gain yagi at the traffic information sign may be both 
time consuming and confusing to a non-technician unless, for example, a vehicle, with a 
pre-mounted yagi antenna that could be easily rotated into position, was to be used.)  

• Highways in moderate terrain regions: Any of the options would probably function, 
assuming, of course, that the 900 MHz option would operate in a mobile situation. (If the 
900 MHz frequencies are unlicensed, however, there is some possibility of interference, 
even though encryption would prevent improper transfer of data.) 

• Highways in heavily populated areas: As the use of 900 MHz canopy or similar systems 
grows in populated areas the potential for significant interference will evolve. In such 
areas it might be appropriate to use only licensed frequency systems (generally VHF or 
UHF). 
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C.3 Propagation Analysis 

 

Legend 

Sensitivity Parameters 
  
 VHF   _________________ 20 dBu 

_________________ 10 dBu 
_________________ 0 dBu 

 
 UHF   _________________ -56 dBu  
 
 900 MHz  _________________ -30 dBu 
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C.3.1 State Route 70 Test 1-1 
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C.3.2 State Route 70 Test 1-2 

 

 

 Test 1-2 VHF 

 

Test 1-2 VHF hi-gain 

 

Test 1-2 VHF 3 dB 
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C.3.3 SR-70 Test 1-3 
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Test 1-3 900 MHz 

 



Evaluation of ITS Technologies in Rural Work Zones  

Western Transportation Institute  96 

C.3.4 SR-70 Test 1-4 
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C.3.5 SR-70 Test 1-5 

 

 

 Test 1-5 VHF 

 

Test 1-5 VHF hi-gain 

 

Test 1-5 VHF 3 dB 

 

 

Test 1-5 UHF 

 

Test 1-5 900 MHz 

 



Evaluation of ITS Technologies in Rural Work Zones  

Western Transportation Institute  98 

C.3.6 SR-70 Test 1-6 
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C.3.7 MDS 1710 Coverage Test Along US 191, Gallatin Canyon, South of 
Bozeman, MT 

 

Figure C-3: MDS 1710 Test Area, US 191 

 

 

 

Note that unity gain antennae were used in the US191 Test Run. 

 

 

_____ 0 dBu 

_____ -20 dBu 
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Table C-1: Field Strength Measurements at Specific Locations along Test Area 

Site Location Field Strength 
Test Site US191-2 -16 dBu 
Test Site US191-3 8 dBu 
Test Site US191-4 -29 dBu 
Test Site US191-5 -40 dBu 
Test Site US191-6 -53 dBu 
Test Site US191-7 -60 dBu 
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APPENDIX D: COMMUNICATIONS ALTERNATIVES ANALYSIS 

by Kyoungwon Kim 

D.1 Abstract 

This appendix describes possible solutions for wireless communications between a pilot car and 
two traffic message signs at the ends of a highway maintenance construction zone. The pilot car 
should be able to communicate with both signs continuously as it travels through the work zone. 
Several alternative wireless technologies and topologies are examined to assess their ability to 
meet the requirements. Multi-hop and point-to-multipoint were regarded as possible solutions. 
We show that a multi-hop network provides the best results in terms of continuous coverage, but 
is also relatively expensive and potentially difficult to configure. Providing electrical power at 
the intermediate node locations poses a further problem to the multi-hop alternative. A point-to-
multipoint solution is a low cost and less complex alternative, but may not provide continuous 
coverage under rough terrain conditions where the transmission path between the pilot car and 
the message signs is not line-of-sight. 

D.2 Introduction 

The major goal in this report is to propose solutions that will provide continuous 
communications between a pilot car and message signs as the car moves through the work zone. 
This system will be employed in rural area where rough terrain and large distances may result in 
non-line-of-sight paths.  

We consider a scenario where the pilot car is equipped with a computer and a wireless interface, 
which can communicate with similarly equipped computers at the message sign locations. The 
pilot car computer will periodically transmit its location (determined by GPS) and an estimate of 
its time of arrival at the end of the work zone to the computers located at the signs. The required 
transmission rate is 100 kb/s. The following is a summary of the communications requirements 
considered in this portion of the study. 

• Provide continuous connectivity between the pilot car and the message signs. 
• Operate in areas with poor or no line of sight between end points. 
• Operate in areas with poor or no cell phone coverage 
• Use a type of communication that has low initial and recurring costs 
• System should be able to overcome any communication hindrances from roadsides or other 

vehicles passing through the work zone 
• Should be easy to deploy 
• May use unlicensed radio spectrum 
• Provide 100 kb/s throughput 
• Digital and Ethernet compatible 
• Operate while the pilot car is in motion 
• Operate with a range of up to five miles 
• Low power consumption 
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D.3 Solutions 

The requirements of continuous communications and ease of use, combined with rugged terrain 
limit the solutions to a few alternatives. While low frequency radio systems can provide wide 
area coverage under non line-of-sight conditions, the available unlicensed spectrum where 
products that meet the throughput and Ethernet compatibility requirements necessitate use of 
radio bands at 900 MHz, 2400 MHz and 5800 MHz (ISM bands). At these frequencies, non line 
of sight communications is poor, requiring topologies that include multi-hop relays to assure 
continuous coverage. 

As a test case, we consider a system that might be deployed in a rural area traversed by State 
Route 70 in northern California. As seen in Figure D-1, this section of State Route 70 is too 
curved to provide line-of-sight end-to-end communications. We consider several available radio 
technologies assess their ability to meet the requirements for this test case. 

• Multi-hop using MeshDynamics system 
• Multi-hop using ZigBee (802.15) 
• Point-to-multipoint using Trangobroadband or Motorola Canopy systems 

For each alternative we develop a plausible solution, identifying the system topology and a 
design that can best meet the requirements, and then estimate its cost and complexity as well as 
its ability to meet the requirements.  

 

 
Figure D-4: Five-Mile Section along State Route 70 in California 
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D.3.1 Multi-hop using MeshDynamics  

Multi-hop networks provide long-range connectivity by relaying packets from one mesh node to 
another, like a bucket brigade. The MeshDynamics approach employs a proprietary multi-hop 
routing protocol combined with 802.11 (Wi-Fi) radio technology. The nodes use a combination 
of 2.4 GHz and 5.8 GHz Wi-Fi radios to assure continuous, non self-interfering connectivity 
between fixed relays and mobile nodes. The MeshDynamics equipment can be configured in a 
topology where the pilot car is a mobile “root” node, the multi-hop network provides 
connectivity to stationary nodes located at the message signs. Figure D-5 shows a simple multi-
hop network. The Ethernet connection would be used to connect the computer on the pilot car to 
the Root node. 

In this scenario, the mobile root node scans the available radio channels and connects to the 
closest stationary relay node. The relay nodes have uplink and downlink radios and form a 
wireless backbone for backhaul. The relay nodes have a second radio interface that serves as an 
access point for mobile or stationary clients. The mobile root node, mounted on the pilot car, 
operates at 2.4 GHz and the backhaul relay nodes operate at either 2.4 GHz or 5.8 GHz. Each 
relay node has two radio interfaces and a router function.  

A solution can be implemented using the MeshDynamics MD 4000 Product Family. There are 
three models using 2.4 GHz backhaul and five models using 5.8 GHz backhaul radios. Two 2.4 
GHz and one 5.8 GHz radios are recommended for this project by MeshDynamics. 

 

Figure D-5: Simple Multi-Hop Network 

 (Source: http://www.meshdynamics.com/DOWNLOADS/MD4000_HWMANUAL.pdf)  
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The MD 4000 Modular MeshTM products support up to 4 radios in a single enclosure. Slots 0 
and l house one uplink and one downlink radio operating on non-interfering channels but in the 
same frequency band. They are both 2.4 GHz or both 5.8 GHz radios. Slot 2 houses a 2.4 GHz 
radio for client connectivity. The 2.4 GHz radios can be set to 802.11b, 802.11 b/g or 802.11g 
only air interface protocols depending on throughput and compatibility requirements. Figure D-7 
illustrates the recommended 2.4 GHz backhaul products and 5.8 GHz product in standard 
configurations. 

• MD4420-BBxx: 2-Radio module 2.4GHz uplink and downlink Backhaul (BH). 
• MD4325-BBxB: 3-Radio module 2.4 GHz BH, Downlink also acts as AP. A 2.4 Mobility 

Scanner in slot 3.  
• MD4350-AABx: 3-Radio module 5.8GHz BH and 2.4GHz AP radio in slot 2. AP modes 

may be b, g, or b&g. 

MeshDynamics suggests that in rural areas or low client density situations, 2.4 GHz backhaul is 
preferred with panel antennas to reduce RF interference from other 2.4 GHz devices. In all other 
cases, they recommend using 5.8 GHz backhauls, starting with two 8 dBm omni-directional 
antennas and nodes 250 meters apart and then to increase node spacing until the throughput 
begins to decline. 

 

Figure D-6: MeshDynamics MD 4000 Product 

(Source: www.meshdynamics.com/DOWNLOADS/MD4000_HWMANUAL.pdf) 

 

Figure D-7: MeshDynamics 2.4 GHz & 5.9GHz Backhaul Products 

(Source: www.meshdynamics.com/DOWNLOADS/MD4000_HWMANUAL.pdf) 
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There are two possible approaches to using the MeshDynamics multi-hop technology. The first is 
to have one of the nodes on the pilot car using the mobility option, where the node on the pilot 
car continuously scans the Wi-Fi channels and links to the strongest signal. As the pilot car 
moves along the highway, its connection to the backbone network, formed by the chain of relay 
nodes, will automatically switch as it leaves the neighborhood of one relay and approaches 
another relay node. Based on the map of State Route 70, nine stationary nodes and one mobile 
node would be needed for full and continuous coverage. A site survey would determine whether 
the number of nodes would need to be increased or decreased.  

The other approach is to not have a MeshDynamics node in the pilot car, but to use a client 
802.11 interface card attached directly to the computer in the pilot car. In this case, range 
becomes a limitation because the embedded wireless interface, without an external antenna, 
requires more relay nodes along the roadway to get continuous coverage. Furthermore, the pilot 
car speed would have to be less than 25 mph to enable the native 802.11 node association 
process to work properly as the car moves from the coverage of one relay node to another. 

 

Figure D-8: Configuration of Mesh Network on State Route 70 

(Source: Tom Dietz) 
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Multi-hop MeshDynamics Solution Cost 

The first approach best meets the system requirements and will require the following 
MeshDynamics components: 

• MD4220-IIxx-1100 – 9 stationary nodes. 
• MD4325-IIIx-1100 – 1 mobile node. 

Figure D-9 shows the connections on the product box and external features after mounting the 
antenna. 

Price estimate: 

• MD4220-IIxx-1100 × 9 = $3,500 × 9 = $31,500 
• MD4325-IIIx-1100 × 1 = $4,150 × 1 = $4,150 
• Total = $35,650 

MeshDynamics will extend a one-time evaluation unit discount of 40 percent. This would make 
the price $21,390. Antennas, power supplies and the other accessories were not included in the 
estimate. Existing power sources could provide power for the node on the pilot car and at the 
message signs. Powering the relay nodes is a significant issue. Note that each relay node 
consumes between 5 and 16 watts, depending on the number of radio interfaces in the 
configuration. The power consumption per relay node would be approximately 10 watts per node 
in the approach described here. 

 

Figure D-9: External Features and Connections 

 (Source: www.meshdynamics.com/DOWNLOADS/MD4000_HWMANUAL.pdf) 
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D.3.2 Multi-hop using ZigBee 

The ZigBee Alliance (http://www.ZigBee.org) is developing a very low-cost, very low-power 
consumption, two-way, wireless communications architecture and protocols based on the IEEE 
802.15.4 standard. Solutions adopting the ZigBee standard will target embedded processors in 
consumer electronics, home and building automation, industrial controls, PC peripherals, 
medical sensor applications, toys and games. 

The IEEE 802.15.4 standard is a simple packet data protocol for lightweight networks and 
specifies the MAC and PHY layers. ZigBee technology takes full advantage of the IEEE 
802.15.4 standard and adds the logical network, security and application software. ZigBee 
technology provides static and dynamic star, cluster tree and mesh networking structures that 
allow large area network coverage, scalable networks and single point-of-failure avoidance. 
Figure D-10 shows topologies enabled by the ZigBee network layer protcocol. ZigBee can 
provide a multi-hop network with 2.4GHz or 915MHz radio links.  

The ZigBee networking layer allows data from one device to be relayed to another device via 
intermediary devices. By relaying through these intermediary devices, the range of a given 
network can be significantly increased while at the same limiting the power consumption of each 
device. Thus a potentially large number of devices is necessary to form a five-mile relay chain. 
As with other multi-hop networks using 900 MHz or 2.4 GHz spectrum, the inter-node spacing is 
determined by terrain and the existence of line-of-sight conditions. The range of ZigBee is 
further constrained by its low transmission power, and is typically no more than 400 meters at 
2.4 GHz, assuming use of omni-directional antennas. 

Currently most of the ZigBee technology is available in chip sets for embedded applications (for 
example, see http://www.freescale.com/ZigBee) rather than packaged products. Helicomm 
(http://www.helicomm.com) offers seven 8051-based IP-Link embedded modules, providing the 
broadest selection of ZigBee and IP-layer wireless networking solutions. Figure D-11 shows IP-
Link Modules that are available and compares their characteristics. 

 

Figure D-10: Topologies for Multi-hop Communication Based on ZigBee 

(Source: www.silabs.com/public/documents/marcom_doc/pbrief/Microcontrollers/en/ 
ZigBee_Brief_Web.pdf) 
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These modules are designed for low data rate (up to 250 kb/s) applications. The line-of-sight 
range is maximum 400 meters. Part number 1221 PA has the largest coverage. If the 1221 PA is 
used for this project, at least 20 devices are needed to cover 5 miles in a multi-hop configuration. 
Table D-1 provides typical specifications for these products. 

Table D-1: IP-Link 1221-2133 Specifications 

Multi-hop Zigbee Solution Cost 

Zigbee modules can be purchased along with a development kit to enable solution development. 
A 2.4 GHz ZigBee Development Kit ( Silicon Laboratory <www.silab.com>) contains the 
following items: 

• 2.4 GHz 802.15.4/ZigBee Target Boards (6) 
• Antennas (6) 
• 9 V batteries (6) 
• 2.4 GHz ZigBee Development Kit User’s Guide 
• Silicon Laboratories Development Kit IDE and Product Information CD-ROM. CD content I  

 

Figure D-11: Range, Frequency and Throughput Comparisons for IP-Link ZigBee 
Modules 

Networking ZigBee
Frequency 2.4GHz
Max. Data Rate 250kb/s
Transmit Range 400m LOS
RF Channels 16
Power Consumption 55+45mA-Transmit

16uA-Sleep
Type F133
RAM 8KB
ROM 64KB
Physical Pins 48
Serial RS232, SMB, C2

RF

MCU

I/O
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• Silicon Laboratories Integrated Development Environment 
• Keil Software 8051 Development Tools (evaluation assembler, linker and C compiler) 
• ZigBee Application Programming Interface (API) library 
• Source code examples and register definition files 
• 2.4 GHz ZigBee Demonstration Software Documentation 
• AC to DC power adapter  
• USB debug adapter (USB to debug interface) 

Figure D-12 shows the components provided in the development kit. One development kit has 
six target boards, antennas and batteries. Thus, at least four development kits are needed to 
construct the number of IP devices required for the State Route 70 deployment.  

Figure D-13 shows how ZigBee modules interface to a laptop computer. The intermediate nodes 
will consist only of the IP devices (no laptop computer required) as the complete protocol stack 
(Phy, MAC and IP layers) runs on the embedded processor.  

 

Figure D-12: 2.4GHz ZigBee Development Kit 
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Price estimate:  

An IP-Module costs $39.03 from Digi-key and one development kit costs $950. The total price 
is: 

• IP-Module × 20 = $780.60 
• Development kit × 4 = $3,800 
• Total: $4,580.60 

This price includes the local power, which is provided by 9 V batteries, but not packaging and 
mounting hardware. 

D.3.3 Point-to-Multipoint with 800 MHz 

Trangobroadband (http://www.Trangobroadband.com) and Motorola Canopy 
(http://www.motorola.com/canopy) offer point-to-multipoint (PTM) digital radio systems 
designed for high-speed fixed wireless access. These systems operate in a range of frequency 
bands, and here we consider the 900 MHz unlicensed spectrum as it provides the best coverage 
in rough terrain. These systems offer highly versatile and cost effective outdoor solutions for 
wireless broadband service providers’ enterprise connectivity. Communication occurs between 
one access point (AP) module to multiple subscriber modules (SMs). A typical deployment of a 
point-to-multipoint (PTM) wireless communications system is shown in Figure D-14. 

 

Figure D-13: ZigBee Device Interfaces to a Notebook Computer 
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For the work zone application, the pilot car serves as the AP and the message signs correspond to 
SMs. The computer in the pilot car connects to the AP through its Ethernet port, and the 
computers at the message signs use the Ethernet ports of the SMs. This approach will work well 
where there is line-of-sight available, as the range of these systems at 900 MHz is well in excess 
of five miles. However, performance under non-line-of-sight conditions is problematic and 
propagation modeling results for the State Route 70 route indicate that continuous 
communications between the pilot car and both message signs is not likely. Relay nodes would 
be needed to assure continuous coverage, but vendors are not making relays for these systems. 
Nevertheless, the turnkey nature of these systems, the ease in setting up a PTM network and the 
convenience of not having to deploy, power and maintain intermediate nodes makes PTM an 
attractive solution. 

We consider here a PTM solution using Motorola/Canopy equipment. The Trangobroadband 
equipment is similar. Canopy will provide 3.3 Mb/s under non-line-of-sight conditions where the 
path is blocked by foliage, using a directional flat antenna. Throughput will be lower if the path 
is blocked by terrain. For the work zone application, the SMs (e.g., message signs) would be 
equipped with directional flat panel antennas oriented toward each other, and the pilot car would 
use an omni-directional antenna. The Trangobroadband M900 series equipment specifications 
are similar to Canopy, but Trangobroadband offers a certified omni-directional antenna option, 
whereas with Canopy a third party antenna supplier is needed.Figure D-15 shows the Canopy AP 
and SM modules and antennas. 

 

 

Figure D-14: Typical Point-to-Multipoint Deployment 

 (Source: www.trangobroadband.com/infobase/pdfs/M900S_UserManual.pdf) 
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Price estimates (Canopy 900 MHz)  

Canopy provides a demo kit, part number TK10290C which has: 

• 2 SMs  
• 1 AP  
• 3 AN900 Connectorized (External) antennas  
• 1 300SS Surge Suppressor  
• 1 SMMB1 SM Mounting Bracket  
• 3 ACPS110-03 110-V AC Power Supplies2  
• 3 CBL-0562 Straight-through Category 5 Cables  
• 1 CBL-0565 Crossover Category 5 Cable  
• 1 UGTK-0001 Trial Kit Quick Start Guide  
• 1 CPT001-CD02EN Sales Overview on CD  
• 1 CPT002-CD02EN Technical Overview on CD  
• 1 CPT003-CD03EN Canopy System User Guide on CD 

The cost per demo kit is $3,225, and is broken down in Table D-.2 

 

Figure D-15: Canopy 900MHz AP and SM 

  (a) AP Connectorized (b) SM (c) 900-MHz radio 
      (External Antenna) with  
   flat panel antenna 
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Table D-2: Component Costs of Canopy 900 MHz Demonstration Kit 

 

Price Summary (Trangobroadband M900S Series) 

Trangobroadband provides prices only for AP and SU (Subscriber Unit).modules: 

• 1 M900S AP 
• 2 M900s SU 
• 1 BS915XL7 900-930MHz Omnidirectional BaseAntenna 

The cost for these modules is $2,683, and is broken down in Table D-3.  

Table D-3: Costs for Trangobroadband AP and SU Modules 

  

900 SM $725
900 APC (External Antenna required) $1,855
300 SS Surge Suppressor $30
SMMB1 SM Mounting Bracket $25
ACPS110-03 110-V AC Power Supplies $10
CBL-0562 $150
AN900 $100
CPT001-CD02EN $295
CPT002-CD02EN $395
 Total price $3,225.00  

Part Number Price($)
M900S AP 1495
M900S SU 539
BS915XL7 110
Total  price 2683  
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D.4 Comparisons 

In this section, multi-hop network and point-to-multipoint network solutions will be compared. 
FTable  shows the key features for MeshDynamics and ZigBee multi-hop and Trangobroadband 
and Canopy point-to-multipoint systems.  

Table D-4: Comparison of Multi-Hop and Point-to-Multipoint Systems 

Note that the cost is based primarily on the AP and SM modules or nodes. The other accessories 
prices were not included to enable a fair comparison. 

Table D-5 shows the advantages and disadvantages of the solutions. 

Factor MeshDynamics ZigBee 
Canopy 
900MHz 

Trangobroadband 
M900S Series 

Frequency 2.4 GHz or 5.8 
GHz 2.4 GHz 900MHz 900MHz 

Range (LOS) 10 miles 400 meters 20 miles 20 miles 

Range (NLOS) It depends on 
environment 

It depends on 
environment 

It depends on 
environment 

It depends on 
environment 

Throughput 22 Mbps 250Kbps 3Mbps 3Mbps 
Relay 
Capability Yes Yes No No 

Cost of each 
component  

Stationary 
Node-$3,500 
Mobile Node-
$4,150 

IP-Module -
$39.06, 
Development 
Kit- $980 

AP-$1,855, 
SM-725 

M900S AP- 
$1,495,  
M900S SU - $539 

Total Cost 
$35,650 
($21,390 
discounted) 

$4,580.60  $3,305  $2,575  

Coverage 
Ability Full Full Caps due to 

terrain 
Gaps due to 
terrain 

Temperature 
Range  -40 to 85° C   -20 to 70° C  -40 to 55° C  -40 to 60° C 

DC voltage 24VDC 9VDC 24VDC 24VDC 
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Table D-5: Advanatages and Disadvantages of Communications Alternatives 

Supplying power is a major concern. In the multi-hop case, each relay needs to be supplied 
remotely and separately and these costs have not been estimated for the MeshDynamics solution. 
For the other PTM case, each SM can be supplied power from the message sign and the AP can 
obtain power from the pilot car.  

D.5 Conclusions 

The most important requirement is continuous communication throughout the work zone, which 
can be met only by the multi-hop solution. However, this solution has several significant 
disadvantages including high cost, set-up time and power supply for the relay nodes. ZigBee is 
better than MeshDynamics in terms of cost and power consumption, but both solutions suffer 
from the disadvantage of the difficulty in proper placement of the relay nodes to assure 
continuous communication. The PTM approach is easy to implement but will not guarantee 
continuous communications where the terrain is rough. 

 

 Advantages Disadvantages 
MeshDynamics Multi-hop 
Network 

 Full coverage  Remote power for relays 
 Long set-up time for 

locating relays 
 High cost 

ZigBee Multi-hop Network  Full coverage 
 Low cost 
 Low power consumption 

 Short range 
 Longest set-up time due to 

locating relays 
 Few commercial products 

Canopy or Trangobroadband 
Point-to-Multipoint 

 Simple to deploy 
 Low cost 
 Easy to supply power to 

SM 

 Coverage gaps 
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D.6 Features Lists 

 
Figure D-16: Structured Mesh Product Family Features from MeshDynamics 
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Figure D-17: 2.4 GHz ZigBee Development Kit from Silabs 
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Figure D-18: ZigBee Family features from Helicomm 
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Figure D-19: 900MS Specification from Trango Broadband 
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Figure D-20: Canopy 900MHz AP and SM Specifications 
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D.7 Sources 
• MeshDynamics (http://www.meshdynamics.com)  
• Helicomm (http://www.Helicomm.com)  
• Trangobroadband (http://www.trangobroadband.com)  
• Silicon Laboratory (http://www.silabs.com)  
• Motorola Canopy (http://www.motorola.com/canopy)  
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