The Pavement Precipitation Accumulation Estimation System (PPAES)

Mark Askelson
Assistant Professor (Dept. Atmospheric Sciences)
Surface Transportation Weather Research Center
University of North Dakota
Grand Forks, North Dakota

Outline

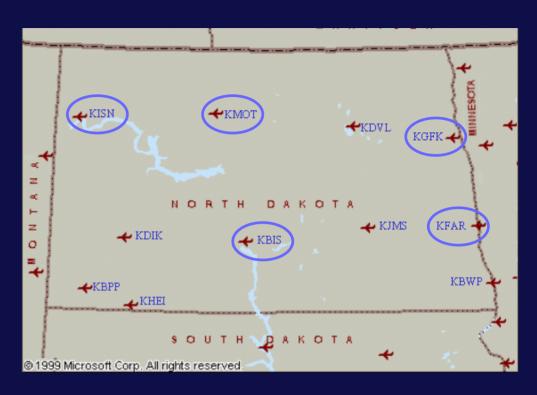
- Problem/Need
- PPAES Design and Development

- Verification
- Results
- Wrap up

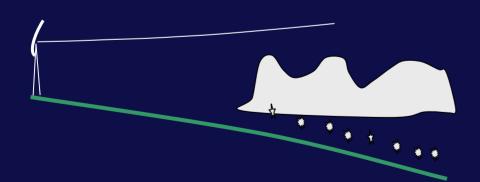
Problem/Need

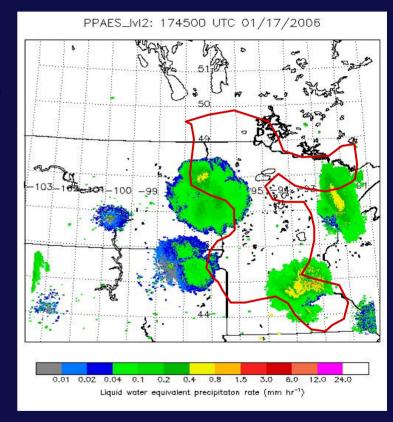
Problem

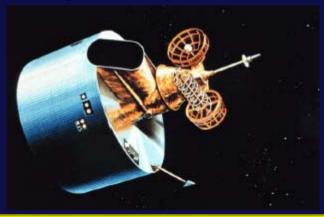
- Precipitation strongly impacts traveler mobility
 - Snow compaction/icy roads
 - Blowing snow/visibility

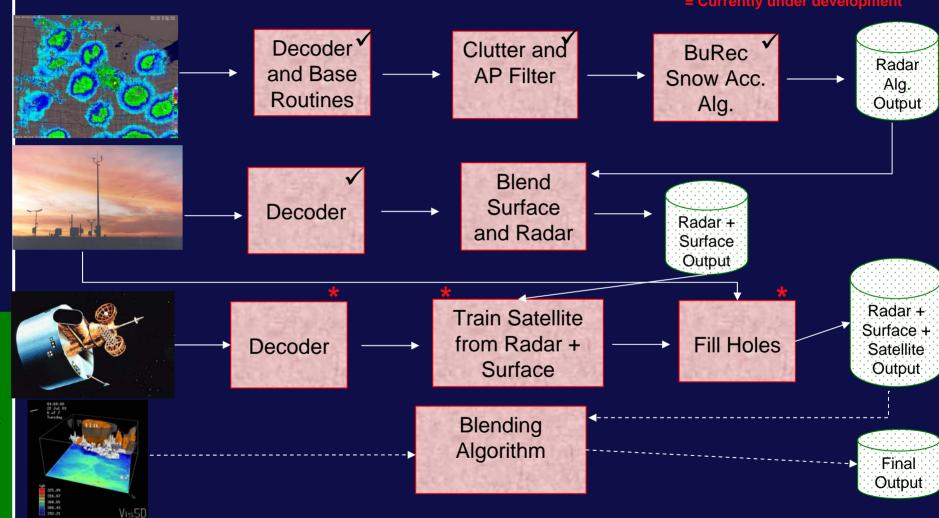

Need

- Traveler information
- Road maintenance
 - Traveler safety
 - Management of treatment/plowing
 - Maintenance Decision Support Systems (MDSSs)
 - Federal Prototype; Pooled Fund Study
 - June 2003 meeting with ND and SD Departments of Transportation officials
 - » Identified pavement precipitation accumulation as a needs area.

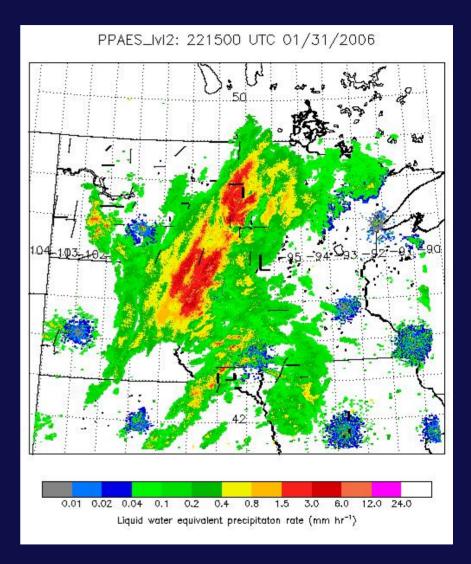

Data Limitations


- Surface
 - Spatial density.
 - Limited information on snowfall rates.
 - ND example.
 - » ~24 ESSs—do not typically provide information regarding snowfall rates.
 - Visibility as a proxy.


ND ASOS/AWOS stations (from http://www.faa.gov/asos/map/nd.cfm).


- Radar
 - Overshoot.
 - Much bigger problem for wintertime precipitation.
 - Will show an excellent example later (validation).
 - Virga

- Satellite (GOES cloud top pressure)
 - GOES vs. Polar Orbiters
 - GOES necessary because of relatively rapid update rate (~1 hour) relative to polar orbiting satellites (hours to days for a location).
 - Issues
 - Utility (new application)?
 - May not resolve light snow well (clouds cannot be discriminated from snow on the ground).
 - Intervening cloud layers.

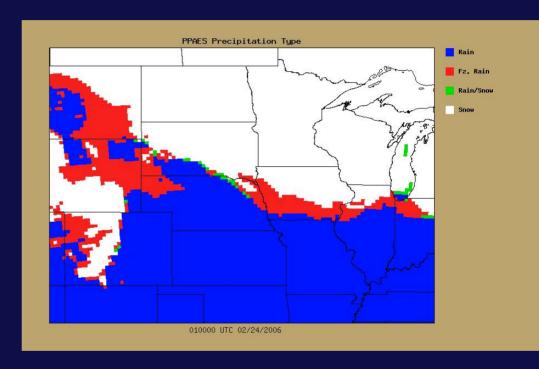

Combines data sources to take advantage of individual strengths.

STWRC

PPAES Development

Radar

- Software complete.
 - Continual improvements.
- Real time products
 - Perl scripts.
 - Inst. precipitation rate.
 - Example
 - » Black lines PFS MDSS test routes.
 - Real-time plots at http://stwrc.rwic.und.edu/ppaes/
 - » 15 October through 15 April.


PPAES Development

Model and Analyses

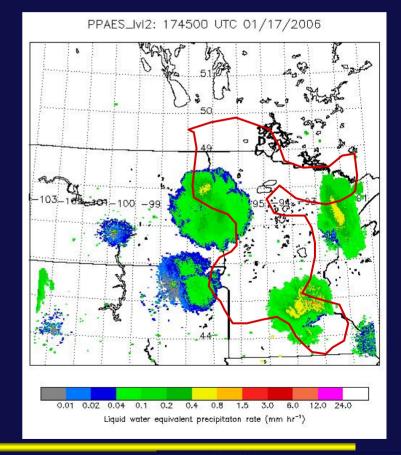
- Precipitation type software complete.
 - Refines precipitation rate estimates.
 - Enables summing different types (snow, rain, etc.) of precipitation.
 - Example

Under development.

Expected precipitation type if precipitation occurs.

Verification

Currently


- Collecting data (05-06 and 06-07 winters).
- Precipitation occurrence
 - Qualitative evaluation (example follows).
- Precipitation amount
 - UND Road Weather Field Research Facility
 - Geonor
 - Yankee
 - Snow boards

Results

- Precipitation occurrence
 - Red outlines light snow area from surface obs.
 - Overshooting.

Results

Precipitation amount

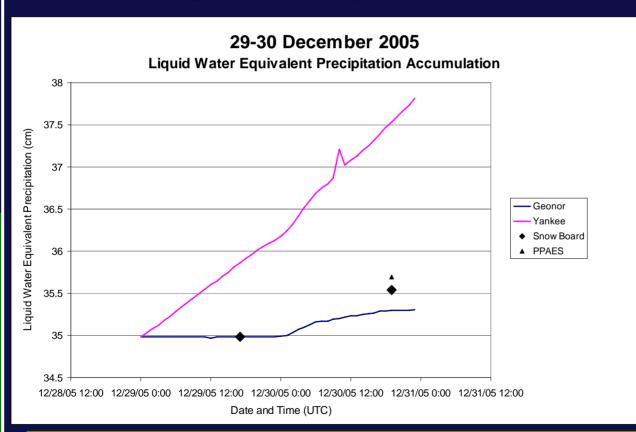
- 11 cases

		Event Total Liquid-Water-Equivalent Precipitation (cm)			
Event	Snow Board Snow Depth (cm)	Geonor	Yankee	Snow Board	PPAES
13-17 December 2005	5.5	0.19		0.83312	1.1638
29-30 December 2005	6.3	0.32		0.5588	0.7175
16 January 2006	2.6			0.2286	0.3667
17-18 January 2006	3.1			0.3048	0.5312
24 January 2006	2.6			0.5842	
29 January 2006	6.5			0.4445	0.5405
9-11 February 2006	4.7			0.9271	1.0538
22 February 2006	2.3			0.4318	0.2970
24 February 2006	15.1			1.215	1.3911
1-2 March 2006	3.0			0.392	0.3736
11 March 2006	10.4			1.651	3.9960

Complete stats

- Bias: 0.375

-% Error: 43.05


•Stats (w/o 3/11/2006)

-Bias: 0.156

-% Error: 32.05

Results

- 29-30 December 2005
 - Road weather field research facility 21.53 km NE of Mayville, ND, WSR-88D (KMVX).
 - ~2.5 inch snowfall.

- Geonor unshielded right now.
- Yankee.
- Liq. H₂0 Equiv:
 - Snow board: 0.56cm
 - PPAES: 0.72 cm

Conclusions

- Strong need for information regarding roadway precipitation accumulation.
- Multi-sensor approach needed.
 - Radar overshoot problem.
 - Limited surface observations.
- Geonor wind shield critical for snow.
 - Amount of (hoped) improvement to be determined this winter.

Continuing Efforts

Algorithm development

- GOES cloud top pressure
- Surface data
- Route-referenced estimates

Verification

- Precipitation occurrence
 - Compute false alarm ratio, probability of detection, etc.
- Precipitation amounts
 - Stratify according to precip. amount and wind strength.

Closing Thoughts

- Technology transfer
- Focus is on the road

Acknowledgements

- Research support is provided by the North Dakota Department of Transportation and Federal Highway Administration under Contract #ITS-9999 (174)
- Special recognition of the support provided by the North Dakota Department of Transportation Office of Maintenance & Engineering

STWRC

SURFACE TRANSPORTATION WEATHER RESEARCH CENTER

UNIVERSITY OF NORTH DAKOTA, GRAND FORKS, NORTH DAKOTA

3980 Campus Road **University of North Dakota Grand Forks, North Dakota 58202** http://stwrc.rwic.und.edu 701-777-2479

Thank You!

