

Evaluation of Dust Control Suppressants on Unpaved Roads Using Mobile Sampling

Dennis R. Fitz and Kurt Bumiller

University of California, Riverside, College of Engineering Center for Environmental Research and Technology (CE-CERT)

2008 Road Dust Management Practices and Future Needs Conference November 13-14, 2008 San Antonio, Texas

Presentation Outline

- Background
- SCAMPER Approach
- Results from Treated Public Unpaved Roads
- Results from Treated Mine Haul Road
- Conclusions

BACKGROUND

- PM Emission Rates for Unpaved Roads have been Determined from Upwind-Downwind Sampling
- Based on the Studies an Equation was Derived to Estimate Emission Rates (USEPA AP42 Equation):

E = k * (s/12)^{0.9} * (W/3)^{0.45} * 281.9 g/VKT

where:

E = PM emission factor in the units shown k = A constant dependent on the aerodynamic size range of PM (0.23 for PM2.5; 1.5 for PM10) s = surface material silt content W = mean vehicle weight in tons VKT = vehicle kilometer traveled

 Upwind-Downwind Measurement are Labor-Intensive and the Equation above May or May Not Apply to Treated Unpaved Roads

A New Measurement Approach

- Method to rapidly evaluate the PM emission rates from roads using real-time sensors in front and behind a test vehicle
 - Measure PM directly in front of and behind a test vehicle with an isokinetic sampling probe
 - Use real-time sensors to quickly accumulate large amounts of PM data
 - Determine emission factors based on the concentration within the vehicle's wake
 - Determine location by GPS
 - PC to log all data at 1-second intervals
- SCAMPER
 - System for Continuous Aerosol Measurement of Particulate Emissions from Roadways

Inspiration

SCAMPER in Action

SCAMPER Emission Factor Calculation

$ER (mg/m) = (PM10_r - PM10_f) * c *A_f$

where:

 $ER = PM_{10}$ Emission Rate

 $PM10_r = PM_{10}$ concentration, **rear DustTrak**

PM10_f = PM₁₀ concentration, **front DustTrak**

c = Calibration factor to relate DustTrak response to filter-based PM_{10} mass measurement

 $A_f = Frontal area of the test vehicle (based on wake homogeneity testing)$

Unpaved Public Road I

- State Route 88 in Arizona
 - Envirotac II Acrylic copolymer at a rate of 0.03 gallon per square foot
 - First six miles treated in May 2005
 - Last mile treated in October 2003
- SCAMPER was used to make repeated test runs
 - Test runs included paved road, treated unpaved section, untreated unpaved section
 - Tests performed in October 2005
 - Mean speed 18 mph unpaved, 32 mph paved

SCAMPER Results Public Road I

Time Series of PM10 Emission Rates SR88 October 10, 2005

Unpaved Public Road II

State Route 188 in Arizona

- Six miles treated in 2004
- Treated by:
 - Application of 1:1mixture of SS1
 - Milled top six inches
 - Applied CRS II Emulsified liquid at a rate of 0.5 gallons/sq yd
 - Applied 28 pounds/ sq yd 3/8 inch chips
- SCAMPER was used to make repeated test runs
 - Test runs included unpaved sections on each end of the treated section
 - Tests performed in October 2005
 - Mean speed 16 mph

SCAMPER Results Public Road II

UCR College of Engineering- Center for Environmental Research & Technology

Time Series of PM10 Emission Rates SR188 October 11,2005

UCR College of Engineering- Center for Environmental Research & Technology **SCAMPER Results Public Road II**

Mine Haul Road

- Treated native Material
- Five Miles Long
- Speed Regulated by Permit
- Haul Truck 50 tons Empty (NW); 150 Tons Loaded (SE)
- Two SCAMPER Modes Used
 - Normal Ford Expedition Tow Vehicle
 - Haul Truck Tow Vehicle Empty and Full

SCAMPER On Haul Truck

SCAMPER Haul Road Results

- Expedition Tow Vehicle
 - NW Direction: 0.51 mg/m
 - SE Direction: 0.52 mg/m
- Haul Truck Tow Vehicle
 - NW Direction (50 tons): 4.2 mg/m
 - SE Direction (150 tons): 7.0 mg/m
- PM10 Emission Rates Tended to be Inverse of Relative Humidity (lower in morning and evening, higher mid-day)

Relationship to the AP42 Equation?

- $E = k * (s/12)^{0.9} * (W/3)^{0.45} * 281.9 g/VKT$
 - k = 1.5
 - Assume s = 12%
- Expedition PM10 Emission Rate
 - Calculated: 389
 - Measured: 0.52 g/VKT
- Unloaded Haul Truck PM10 Emission Rate
 - Calculated: 1,500 g/VKT
 - Measured: 4.2
- Loaded Haul Truck PM10 Emission Rate
 - Calculated: 2,460 g/VKT
 - Measured: 7.0

Can the AP42 Equation be Adjusted?

- Normalized the AP42 to the Ford Expedition, 281.9 becomes 0.318
- Calculated Unloaded Haul Truck PM10 Emission Rate Normalized:
 - Calculated: 1.7 g/VKT
 - Measured: 4.2 g/VKT
- Calculated Loaded Haul Truck PM10 Emission Rate Normailzed:
 - Calculated: 2.8 g/VKT
 - Measured: 7.0 g/VKT
- Normalized Result is Within a Factor of 3; Not Bad for a HUGE Extrapolation
- Power Function of W^{0.45} Correctly Predicts the Relationship Between Unloaded and Loaded Haul Trucks:
 - 1.7/4.2 = 0.4
 - **2.8/7.0 = 0.4**

CONCLUSIONS

- The suppressant applied to SR88 five months to two years ago reduced PM_{10} emissions by a factor of five.
- The suppressant applied to SR188 a year ago reduced PM₁₀ emissions by a factor of sixty.
- SCAMPER measurement precision was 20% on unpaved public roads
- SCAMPER was shown to be an effective method to quantify performance of dust suppressants on unpaved roads

CONCLUSIONS

- The AP42 equation grossly over-predicted PM10 emissions from the haul road
- The weight power function of 0.45 of AP42 correctly predicted the PM10 emission rates between the unloaded and loaded haul trucks on the treated haul road
- SCAMPER was shown to be an effective method to quantify performance of dust suppressants on haul roads
- Treated haul roads should be permitted by performance and not AP42 estimates
- A normalized AP42 equation could be used to evaluate permit compliance over a range of vehicles