Automated Collection of Winter Maintenance Data

Applications and Challenges

Steve Gaddy, Senior Scientist Meridian Environmental Technology Grand Forks, North Dakota

2006 National Rural ITS Conference Wednesday, August 16, 2006

Background

- Automated Vehicle Location (AVL) Systems
 - Automatically report accurate location information at high frequency (seconds to a minute) in real-time
 - Well-established technology used in a variety of fleet management applications
- Maintenance Data Collection (MDC) Systems
 - Report maintenance activities (and related information) as they occur
 - Automation of MDC is a new field with many challenges

What is MDC?

- Winter maintenance-related elements
 - Plow position (up, down front, wing, underbody)
 - Chemical application (material and rate)
 - Lane or lanes
 - Plowing
 - GPS and accurate mapping could be used to resolve this automatically
 - Chemical application
 - Trucks can apply to traveling lane, or to right/left side of vehicle (centerline of two lanes)

What else is MDC?

- Observed elements
 - Air temperature
 - Pavement temperature
 - Road condition
 - Weather condition
- Other potential elements
 - Summer maintenance activities
 - Other DOT-specific needs

Why MDC? Manual Reporting Issues

- Time consuming
 - Maintenance personnel do not need extra tasks during event
- Communications in Field
 - Internet often not available
 - Telephone service can be inconsistent
- Efficiency
 - Amount of information to be transmitted makes automated reporting by telephone difficult and error-prone
 - Internet reporting tends to incur significant delay between action and report times

Automating MDC Goals

- Provide <u>maximum</u> amount of accurate data with <u>minimum</u> amount of manual reporting
- Provide real-time data in a standard, easyto-interpret, consistent format that can be used by a variety of applications

Automating MDC Reporting Methods

- "Automated" MDC is generally a manual/automated mix
- Trucks usually have sensors, while drivers usually have touchscreens
- Automatically sensed information
 - Blade status
 - Air temperature
 - Pavement temperature
- Manually provided information
 - Road conditions
 - Weather conditions
 - Lane of travel/application
- Information provided via either method
 - Chemical application and rate

MDC Touchscreen – Colorado DOT

MDC Touchscreen – Colorado DOT

MDC Applications MDSS

- Maintenance Decision Support Systems (MDSS)
 - Provide an integrated suite of tools to aide maintenance personnel in decision-making related to winter maintenance activities
 - Static inputs include:
 - Information on DOT resources and practices
 - Road infrastructure metadata
 - Dynamic inputs include:
 - Weather observations and forecasts (dynamic)
 - Pavement conditions and previous road treatments (dynamic)
 - Pavement model outputs include:
 - Forecast pavement conditions
 - Forecast pavement temperatures
 - Outputs are based one of several future treatment models:
 - No further treatment
 - MDSS-recommended treatment
 - What-if? Alternative treatment selected by the user

MDC Applications - MDSS GUI Map view

File Report Data Sync Region Options Help

Processing: This is the one and only data cacher (junning right now) and I am proud to report I am done synchronizing for now.

MDC Applications - MDSS GUI Table view

File Report Data Sync Region Options Help

Alerts Next 24 Hours	1 Custom												None	e / Alterni	ative 🖌	MDSS (Re	commended) 🔲 Sta
State Wide Current View	MAY 242 (Call	ana Dr. A	our Mile D	d Delle													
MDSS Weather Alerts	WT-212 (CUI	ege DL.A	our mile R	a. Ben	Nay) 991-09-1	-											
	Date	Road	Road	%	Maint	Road	Road	%	Maint	Ait	Dew	Wind	Cloud	Precip	Precip	Snw	Date
	Time	Temp	Cond	loe	Action	Temp	Cond	loe	Action	Temp	Pt	Dir/Spd	Cvt	Prob	Туре	Rate	Time
MDSS Road Alerts	Thu 08:10PM	20	Diy	0		20	Dry	0		11	0	VENE 10		10	- SN	0.04	Thu 08:10PM
	Thu 07:10PM	26	Day	0	1	26	Dev	0		12	7	WINE 0	-	10	1. SN	0.04	Thu 07:10PM
	Thu 05:10PM	20	Dry	0		20	Dry Dry	0		14	/	LN 12	0	10	SN SN	0.04	Thu 05:10PM
MDSS Blowing Snow Alerts	The 0d 10PM	36	Dry	0		30	Dry	0	-	10	0	LN 13	0	20	- Sn	0.03	Thu 0d:10PM
	Thu 02:10PM	26	Dry	0		28	Dry	0		10	7	LN 14	-	20	1 Jen	0.04	Thu 02:40PM
	Thu 02:10PM	36	Dry	0		38	Dry	0	-	17		LN 17	à	20	-C -CN	0.04	The 02:10PM
NWS Alerts	Thu 01:10PM	32	Dry	0		33	Dry	0		16	9	1N 17	ā	20	1 CICN	0.04	Thu 01:10PM
	Thu 12:10PM	27	CWet	0		28	Dry	0		13	10	LN 19	-	20	1 ICN	0.04	Thu 12:10PM
9AM 3PM 9PM 3AM 9AM	Thu 11:10AM	24	60 Cluch	37		25	Ice	00		13	10	1N 17	-	20		0.18	Thu 11:10AM
Man Viewe	The 10-10AM	22	Stechush	73		22	Ice	99		14	8	1N 15	-	30	- ICN	0.24	Thu 10:10AM
in ap views	Thu 09:10AM	20	Slush	77		20	1 ISN	100		13	7	4N 13	-	40	1 ISN	0.24	Thu 09:10AM
None 90	Thu 08:10AM	10	Slush	79		18	1 ISN	100		13	5	⊀ NNE 10	-	40	1 ISN	0.24	Thu 08:10AM
MDSS Route Views	Thu 07:10AM	19	Slush	75	\sim	19	1 USN	100		15	5	↓ N 10	-	50	1 ISN	0.24	Thu 07:10AM
	Thu 06:10AM	19	Stush	72		19	1 ISN	100		16	5	↓ N 13	-	50	1 ISN	0.24	Thu 06:10AM
None	Thu 05:10AM	21	1 USN	84	17 NaCl 10	20	1. USN	100		14	7	↓ N 13	-	60	+ USN	0.24	Thu 05:10AM
METAR Views	Thu 04:10AM	21	1 ISN	83		20	1. ISN	100		15	8	# NNE 14	-	70	1 ISN	0.23	Thu 04:10AM
None - 90	Thu 03:10AM	22	Slush	71	4)- NaCl 100	21	1 ISN	100		17	9	¥ NNE 15	-	80	-DOISN	0.44	Thu 03:10AM
	Thu 02:10AM	25	4 USN	89	1	21	1 USN	100		17	10	¥ NNE 15	1	85	+ ISN	0.44	Thu 02:10AM
RWIS Views	Thu 01:10AM	23	4 ISN	85	Г	1					12	¥ NNE 15	-	90	1. ISN	0.66	Thu 01:10AM
None 🚽 go	Thu 12:10AM	25	4 ISN	89	1)- NaCI 100	Po	com	mo	ndod		12	# NNE 17	-	90	- ISN	0.66	Thu 12:10AM
	Wed 11:10PM	25	<) (ISN	88		ne	COIII	ille	nueu		13	¥ NNE 18	200	90	+ OSN	0.66	Wed 11:10PM
-Web Browser Links	Wed 10:10PM	24	4 USN	82						100	14	¥ NNE 19	-	80	+ ISN	0.66	Wed 10:10PM
Adjusting time slider position	Wed 09:10PM	25	4 USN	85	-> NaCJ 100	maintenance actions			ns	15	¥ NE 18	-	80	+ USN	0.66	Wed 09:10PM	
	Wed 08:10PM	26	Slush	76						17	¥ NE 17	1	80	-COSN	0.41	Wed 08:10PM	
	Wed 07:10PM	27	Slush	64	-> NaCI 100	27	Ice Ice	99		24	18	VENE 14	-	80	+ OSN	0.19	Wed 07:10PM
	Wed 06:10PM	30	Slush	21		31	Slush	64		27	19	←E 14	-	70	-0 OSN	0.16	Wed 06:10PM
	Wed 05:10PM	32	Wet	0		32	Wet	0		30	20	←E 16	-	65	- OSN	0.16	Wed 05:10PM
	Wed 04:10PM	35	Wet	0	- NaCl 1 100	35	Wet	0		31	20	★ESE 16	-	65	+) (ISN	0.16	Wed 04:10PM
	Wed 03:10PM	35	💧 Wet	0		35	Wet	0		29	19	K SE 17	-	60	1. SISN	0.28	Wed 03:10PM
	Wed 02:10PM	35	💧 Wet	0		35	💧 Wet	0		28	21	K SE 19	-	60	+ SISN	0.30	Wed 02:10PM
	Wed 01:10PM	34	💧 Wet	0		33	Wet	14		26	20	K SE 21	-	60	4 USN	0.15	Wed 01:10PM
	Wed 12:10PM	30	Slush	43		31	Slush	63		22	21	K SE 23	-	60	FR	0.00	Wed 12:10PM
	Wed 11:10AM	29	Slush	55		30	Slush	74		21	21	K SE 22	-	65	+ USN	0.10	Wed 11:10AM
	Wed 10:10AM	28	Slush	75	NaCJ 10	28	Ice Ice	85		22	19	K SE 21		65	FR	0.00	Wed 10:10AM
	Wed 09:10AM	26	lce Ice	87		27	Ice Ice	86		22	19	K SE 18	-	60	FR	0.00	Wed 09:10AM
	Wed 08:10AM	26	Ice Ice	85		26	Ice Ice	85		19	16	K SE 14	-		1 ISN	0.02	Wed 08:10AM
	Wed 07:10AM	26	Slush	78		26	Slush	78		19	16	►ESE 12			+ ISN	0.13	Wed 07:10AM
	Wed 06:10A	Wed 05:10A 71 17										+ E 8			+ ISN	0.03	Wed 06:10AM
	Wed 05:10A	Past	t mai	nte	nance rep	70		17	13	←E 10	-		+ OSN	0.13	Wed 05:10AM		
	Wed 04:10A				in the set		Stuar	56		17	14	WENE 11	-		- ISN	0.21	Wed 04:10AM
	Wed 03:10AM	25	Slush	28		25	Slush	28		17	14	¥NE 9	-		1 ISN	0.15	Wed 03:10AM
	Wed 02:10AM	24	Slush	44	•)• mix 🔳 175	24	Slush	44	9 mix 176	17	16	KINE 7	-		I. ISN	0.03	Wed 02:10AM
	Wed 01:10AM	25	Slush	32		25	Slush	32		19	16	KINE 7	-		1ISN	0.12	Wed 01:10AM
	Wed 12:10AM	29	Slush	20		28	aiusir	20		21	18	VINNE 8	-		SN	80.0	Wed 12:10AM
	Tue 11:10PM	30	U Dry	0		30	U Dry	0		22	18	NNE 10	-	1	4 SN	0.03	Tue 11:10PM
	Tue 10:10PM	32	U Dry	0		32	U Dry	0		23	17	VINE 13	-		4 SN	0.01	Tue 10:10PM
	Tue 09:10PM	32	U Dry	0	P- NaCI 25	32	U Dry	0	P. NaCl 25	24	19	ANNE 15	-		None	0.00	Tue 09:10PM
	Tue 08:10PM	34	Ury Dry	0		34	Ury Dry	0		25	20	VINNE 16	-		None	0.00	Tue 08:10PM
	Tue 07:10PM	35	U Dry	0		35	Ury Dry	0		27	19	↓ N 17	18		None	0.00	Tue 07:10PM
	Tue 06:10PM	39	U Dry	0		39	Ury Dry	0		31	19	¥ NNE 21	-		None	0.00	Tue 06:10PM
	Tue 05:10PM	.49	Drv	0		49	Drv	0		40	19	LN 23	0		None	0.00	Tue 05:10PM

Meridian Environmental Technology

MDC Applications Vehicle-MDSS

Wed 16:00 MDT

- In-vehicle information systems
 - Vehicle-MDSS
 - Data based upon current truck location
 - Route-specific
 - Concise
 - Local radar
 - Short-term forecast
 - Treatment recommendations
 - Allows personnel to adjust to evolving situations without returning to a computer

MDC Applications DOT Specific

- Automated generation of required activity logs
 - Significant benefit for the drivers
- Automated road report generation
- Real-time vehicle tracking
 - Supervisors can visualize the fleet using a spatial overview
- Historical tracking
 - Accurate response to queries about how a situation was handled
 - Definitive proof of activities
- Inventory tracking
 - Automated tracking of material usage and remaining supplies
 - Automated tracking of vehicle maintenance needs
- Others??

MDC Challenges

 AVL has well-established standards, and simple, consistent formats

 MDC can be reported and interpreted in many varying ways

 No standards have yet been established for the recording, transfer, interpretation, or storage of MDC data

Communication Issues Truck to DOT database

- Communication options from truck to DOT database
 - On the road (real-time transfer)
 - Cellular Communication (coverage issue)
 - State Radio (bandwidth issue)
 - At the shop (delayed transfer)
 - Automated transfer when within close range
 - Manual transfer using data card inside shop
- Both systems must plan for delayed data transfer
 - Real-time data could be out of cellular/radio range
 - Will data be stored or lost?
 - Will delayed data be transferred in chronological order, or reverse order?
 - How will database handle ingestion of delayed data?

Communication Issues DOT database to end-user

- Communication options from DOT database to end-user
 - DOT database options
 - Within state network
 - Hosted by outside vendor
 - Relational database direct queries via XML
 - Allows for complete data transfer with no missed or duplicated data (using sequential identifiers)
 - Allows for targeted data acquisition
 - Hierarchical database transfer of ftp file(s)
 - One file updating every 5 minutes with new data
 - Simplest method
 - Data lost if not retrieved every x minutes
 - Time-stamped files every 5 minutes
 - Good solution if filenames are predictable
 - Delayed data goes under received time, not observed time
 - Old files must be purged regularly

MDC Formatting Issues Manual (touchscreen) data

- Only report upon update
 - If data is not updated regularly, most recent report continues to be used
 - Some units force a reset upon truck startup
 - Good "running screen" is vital for driver awareness
- Interpretation issues
 - DOT, drivers, and end-users must agree on the interpretation of subjective (and even objective) data elements
 - Report average condition or worst case?
 - Report traveling lane or application lane?
 - Report average chemical use or worst case?
 - Are lane numbers consistent?

MDC Formatting Issues Automated (sensor) data

- Reports are continuous
- Reports are generally combined with AVL data
- Temperature and blade status are usually straightforward
- Application material and rate are very difficult to automate
 - Every make and model of spreader generally has unique, proprietary output
 - Problems encountered with some equipment
 - Output differs depending upon operator setting
 - Output is a setting number, which can vary based upon local operation (i.e. application 4 for truck A is different than application 4 for truck B)

Post-processing Issues

- Convert each vendor-specific format into a common data format
- Convert potentially voluminous data into a snapshot of what each plow is doing at a given time
 - Use the latest location (within the last x minutes)
 - Search back through MDC reports for the last valid value for each parameter (since a reset point)
 - Result is a snapshot for that unit at that time
 - All units combined into one report for a complete maintenance data report for all active routes

Processing Delayed Data

- Including delayed data reports in the post-processed reports adds significant processing time
- When non-chronological data are received, our hierarchical database file for that truck must be completely re-written
- All summary reports from that time forward must also then be re-written
- This processing limits the frequency at which reports can be generated
- A relational database would likely be a better solution in the long-term

Mapping to Routes

- Significant logic required to map point-specific truck data onto MDSS Segments and Routes
 - Unidirectional vs. Bidirectional and lane issues
 - Varying conditions and maintenance along segment or route
 - Multiple trucks combining to work a segment or route
- Presently require a substantial portion of a route to be covered before interpreting an action or road condition
- This, plus data processing & upload lags, can cause a delay in the time it takes incoming data to be interpreted and portrayed in the MDSS GUI
 - Truck locations will show up sooner than their cumulative actions will be interpreted

Conclusions

- Automated AVL/MDC systems are evolving into the most efficient means of transferring maintenance reports from the field to the DOT
- Real-time use of this data is spurring new technology to improve DOT operations (MDSS, real-time road reporting, etc.)
- Significant spin-up issues
 - The use of previously tested systems should minimize this spinup, but state-specific equipment, data, operational, and/or communication issues will always need to be accounted for

Conclusions (continued)

- All parties (vendor, DOT, end-user) must work together more closely early in the process to minimize reporting and interpretation issues for a more efficient spin-up
 - Desired to maximize the return on the state's investment in the technology
- Vendors need to be able to respond efficiently to issues that arise during the deployment of these systems
 - This is particularly critical in the early deployment period when operational issues are most likely to be revealed
- Standards should be developed for both the MDC data systems, as well as those systems that feed the MDC (eg. chemical spreaders)

Questions or Comments?

Steve Gaddy, Senior Scientist Meridian Environmental Technology 4324 University Avenue Grand Forks, ND 58203

sgaddy@meridian-enviro.com 701-792-1830

