EVALUATION OF RADAR SENSING IN REDUICING VEHICLE-DEER COLLISIONS ON INDIANA TOLL ROAD I-80

Sedat Gulen Statistical Research Engineer

Samuel E. Wolfe Road Operations Engineer INDOT - Toll Road

Professor George McCabe Department of Statistics Purdue University

Joint Transportation Research Program Project No. SPR-2495

CRASH COST

<u>State</u>	Fatal	Injury A	<u>Injury B</u>	Injury C	PDO
Arizona	\$3,000,000	\$210,000	\$42,000	\$22,000	\$3,000
lowa	\$1,000,000	\$150,000	\$10,000	\$ 2,500	\$2,500
Louisiana	\$3,000,000	\$ 63,000	\$63,000	\$ 63,000	\$2,300
Maine	\$2,600,000	\$180,000	\$36,000	\$19,000	\$2,000
Nebraska	\$3,770,000	\$316,000	\$66,900	\$34,900	\$6,200
Oregon	\$1,350,000	\$1,350,000	\$55,000	\$55,000	\$13,000
Texas	\$ 854,000	\$854,000	\$41,000	\$41,000	\$1,400
Vermont	\$3,400,000	\$260,000	\$56,000	\$27,000	\$4,000

INDIANA: Yearly: 16,000 deer-vehicle collision;

\$22 million Property damage; 3 Fatalities.

State Farm Reports nationwide from July 1, 2004 to June 30, 2005:

1 million deer_vevicle collisions; 150 deaths;

\$1.1 Billion in vehicle damages: (Average PDO Claim=\$11,100)

OBJECTIVE

The overall objective of this project is to evaluate The Radar Sensing Approach developed by "Sensor Technologies & Systems, Inc." in reducing vehicle-deer collisions on Indiana Toll Road

Expected Implementation and Study Benefits

If the results of the study statistically show a significant reduction in deer kills, the Indiana Toll Road will install radar-sensing devices on the Toll Road at sensitive locations. INDOT will likely install the same equipment on other state routes with a history of vehicle-deer collisions.

Accumulative Deer Kill Reports on Toll Road

Year	J	F	Μ	А	Μ	J	J	A	S	0	N	D	Total
1992	22	6	16	24	95	50	21	9	6	73	128	49	499
1993	16	9	22	20	77	60	14	10	24	84	115	62	513
1994	16	9	12	47	84	54	16	11	13	116	148	51	577
1995	22	7	18	22	98	61	14	10	14	89	143	61	559
1996	38	13	17	20	124	152	23	9	15	92	143	44	690
1997	22	17	20	28	108	97	23	8	12	90	128	61	614
1998	40	22	17	32	92	55	18	10	16	88	184	82	656
1999	28	20	25	33	125	67	22	13	13	111	144	28	629
2000	24	20	11	48	135	65	30	15	26	102	131	27	634
2001	11	28	19	39	103	74	24	9	22	151	201	63	744
2002	43	14	9	39	134	78	10	13	17	72	169	57	655
2003	28	8	27	26	128	121	23	10	21	140	134	57	723
2004	25	12	34	47	126	93	19	15	26	122	161	35	715
2005	33	24	13	40	175	92	24	9	16	200	160	35	821

Deer Killed on Toll Road I-80/90

Years

There are two Peaks as seen in the graph:

- 1) Smaller peak (May to June);
 - more probably due to:
 - Fawning and
 - Increased nutritional requirements of razing young cause females to travel more.
 - Availability of high quality of food cause travel
- 2) Larger Peak (October to November): more probably due to:
 - Breeding season; animals are more active and careless
 - Hunting season cause extensive movement
 - Lack of food can cause greater travel.

TOP 10 STATES FOR DEER-CAR ACCIDENTS

- Pennsylvania
- Michigan
- 3. Illinois
- 4. Ohio
- Georgia

- 6. Minnesota
- 7. Virginia
- 8. Indiana
- Texas
- 10. Wisconsin

Location of the the experiment on I-80/90 between Mile Markers 130 and 143.

RADS Roadway Animal Detection System

RADS in Operation

DESIGN OF EXPERIMENT

The Following is the Design of Experiment actually used to place radar sensors and the control sections in between on I-80/90 Toll Road in Indiana.

There is two replicates and this design is statistically sound and valid.

The radar system has been functional since October 2004 and deer-vehicle accident data has been collected daily and reported monthly. The unit of data for the Poisson Regression is the total amount of Deer-Vehicle collisions per mile.

DESIGN OF EXPERIMENT

Typical Layout

T1, T2,, T14 ARE TREATMENTS

1-Mile Radar Sensor

1-Mile Control

POISSON REGRESSION ANALYSIS will be used to analyze the data**Dependent Variable:**Number of Deer-Vehicle Collisions**Explanatory Variables:**Month, Replicate, Treatments, AADT, etc.

Typical Layout of the radar sensing systems

Deer Sensors Milepost 130 – Milepost 142 I-80/90 Indiana Toll Road

The Indiana Toll Road in cooperation with the Indiana Department of Transportation Research Division, Purdue University and the University of Montana installed 72 sensors (6 per mile rather than 4 due to over-pass bridges and curving) and are testing an animal detection/warning system.

The system uses radio frequency transmitters and receivers to send a beam parallel to the road. If an animal (most likely a deer) breaks the beam, the flashing yellow beacons turn on and flash for two minutes to warn the drivers.

STATISTICAL APPROACH

Poisson Regression

$$P(y = r) = \frac{\left(\mu^{r} e^{-\mu}\right)}{r!} \cdots r = 0, 1, 2, \dots$$

where :
$$\mu = E(y) = Expected$$
 Value
 $\mu > 0$ then μ can be log linear function of X's
 $Log(\mu_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip}$
This can make μ positive for any values of X's or β 's.

X's are Explanotor y Variables such as : Months, Years, Geographic al rating of the test sections, replicate, the previous year (1998) as a covariate.

The Following Warning Sign was used

ANIMAL PRESENT WHEN FLASHING

This sign was used in Europe

Radar Systems in Place

MILE 1

The system is 100% solar powered and each mile of the test area operates independently from the other locations.

Each system is connected to a cell phone for remote monitoring, checking and data collection.

The system was activated in 10/2004.

PRELIMINARY STATISTICS

YEAR	MONTH	GROUP	DEER-VEHICLE COLLISION
2005	January	Control	5
2005	January	Radar	1
2005	April	Control	3
2005	April	Radar	2
2005	May	Control	13
2005	May	Radar	12
2005	June	Control	10
2005	June	Radar	3
2005	October	Control	11
2005	October	Radar	13
2005	November	Control	8
2005	November	Radar	13

PRELIMINARY CONCLUSIONS

- 1. High Accident Months Data (May to June& October to November) will be used in the statistical analyses.
- 2. Current data from 2004 to 2006 was not enough to make any statistical conclusion
- 3. Data collection will continue for another 2 or 3 years.
- 4. Following variables were selected for Poisson Regression Models:
 - a. Dependent variable:

Number of Deer_vehicle collisions per mile per month.

b. Independent Variables

Months, Years and

Treatments, 14 of them:

(1-mile long radar sections , total of 6 and

1-mile long control sections, total of 8).

5- The Vehicle-Deer collisions data will be used to compare these 14-treatments to evaluate the effectiveness of radar sensing systems combined with reactions of drivers.

RADAR SPECIFICATIONS & CONTACT INFORMATION

Terry_Wilson@sensor-tech.com 8900 East Chaparral Road, Scottsdale, Arizona 85250 Phone: (480) 483-1997 Fax: (480) 483-2011 www.sensor-tech.com

RADS SPECIFICATIONS

SYSTEM

Animal Sizes Maximum Range per Sensor Network Range – Typical Minimum Sensor Range Approximate Weight Outputs – Hardware Outputs – Data Communications

Power Power System

ENVIRONMENTAL

Temperature Humidity Altitude (above sea level)

Wind Weather Deer, Elk, Moose, Bear, etc. 402 meters 1.6 km increments, extendable 0 meters 3 kg Relay Contact Closure Time/Date of Crossing, Segment, Duration Dedicated Short Range Wireless in Network Cell Phone for Remote Access of Data & Maintenance 12 VDC Solar with Batteries or AC Power as Available

-40°C to +85°C 0 to 95% RH, non-condensing (60°C max) -150 to 4270 m (-500 to +14,000 ft.) operating -150 to 12,190 m (-500 to +40,000 ft.) storage 45 meters/second maximum All weather conditions

QUESTIONS