Enhanced Wildlife Warnings as a Potential Means of Reducing Wildlife-Vehicle Collisions

Laura M. Stanley

Virginia Tech Transportation Institute

Amanda Hardy & Suzanne Lassacher Western Transportation Institute

Background

- > 1,000,000 deer-vehicle collisions/annually:
 - 200 fatalities,
 - 29,000 injuries, and
 - costing \$1.1 billion in vehicle damage alone.
- Techniques that rely on altering animal behaviors:
 - roadside-reflectors,
 - vehicle-mounted whistles,
 - and wildlife fencing combined with passages under or over roads.
 - Effectiveness is limited or uncertain
- Transportation agencies may consider driver-based measures to reduce these collisions.

Objective

<u>Research Question:</u>

- Do enhanced wildlife advisories (simulated environment) result in a reduction of speed and/or reduce potential for wildlife-vehicle collisions?

• Approach:

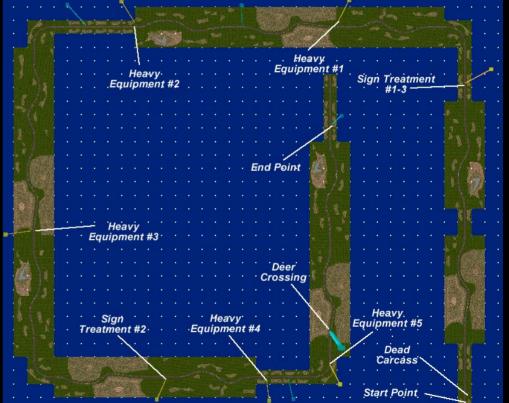
- Relate changes in speed, onset of braking distance, and increased awareness to reduce animal-vehicle collisions.

WTI Driving Simulation Laboratory

- DriveSafety DS500C
 Vection Simulator
- Fully functional Saturn sedan cab with realistic vehicle dynamics.
- Five visual channels with a 160-degree field of view.
- High fidelity visual and auditory environment.

Research Methods

- 81licensed drivers balanced according to age and gender:
 - Standard sign group (M = 34 years);
 - 2. Standard sign with flashing beacon group (M = 32.4 years);
 - 3. VMS group (M = 35.4 years);
 - Combination of VMS & flashing beacon (M = 35 years).
- Participants screened for Simulator Induced Discomfort.
- Subjects acclimated to simulator.



Variable Message Sign

BE ALERT

Driving Environment- "Bozeman Pass"

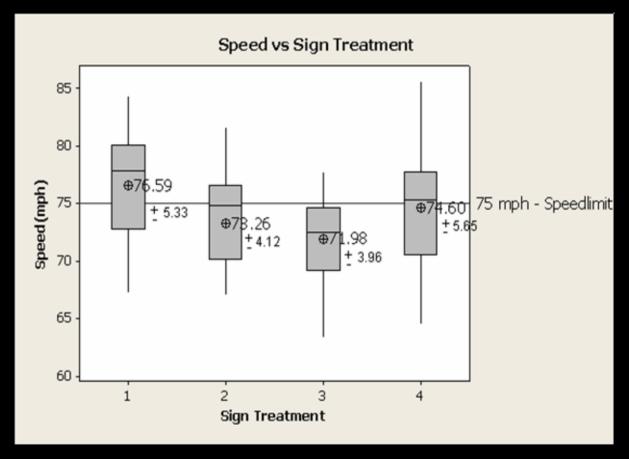
- ~12-mile eastbound segment of I-90 between Bozeman and Livingston
- Foliage (forested areas and open grass land), terrain (rural, mountainous, passing through a canyon pass), roadway geometry (several curves and straight sections), traffic density (low density)
- Speed limit (75 mph)
- Nighttime conditions
- Heavy equipment locations
- Sign treatment locations
- Deer crossing end of scenario

Research Methods

• Dependent variables included:

- Velocity filtered 500 ft./152.4 m before and after the sign (1000 ft/304.8 m)
- Onset of braking point where participant began to decelerate to apply brake (i.e., when the participant removed his/her foot from the accelerator pedal)
- Collisions whether the participants collided with the deer

Research Methods

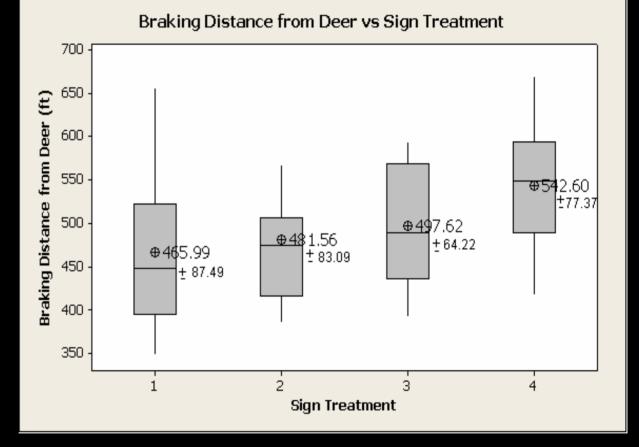

- Upon completion of the session, participants were given a four-part questionnaire to determine:
 - (1) the types of signs and messages they remembered seeing;
 - (2) if, and how, the signs altered their behavior;
 - (3) the number of construction equipment vehicles in the scenario; and
 - (4) a personal history of animal-vehicle collisions.
- Each subject also completed a post-test questionnaire related to their experience with SID.

Results - Velocity vs. Treatment

• Enhanced signs = slower speeds than standard sign.

• <u>VMS group</u> statistically significant reduction in speed over the <u>standard sign</u> (p<.05), by 4.6 mph.

• Small speed changes however, if drivers traveling at 76.6 mph (112.3 ft/sec) reduced their speed to 72.0 mph (105.6 ft/sec) = additional reaction time to avoid a collision.



1 = Standard Sign, 2 = Standard Sign w/Flashing Beacon,
 3 = Variable Message Sign, 4 = VMS & Standard Sign w/Flashing Beacon.

Results - Onset of Braking vs. Treatment

•Enhanced signage treatments = increased braking distance vs. standard sign.

•<u>Combination</u> treatment provided the greatest statistically significant <u>onset of</u> <u>braking distance</u> (p<.05), increase of 76.61 ft

1 = Standard Sign, 2 = Standard Sign w/Flashing Beacon, 3 = Variable Message Sign, 4 = VMS & Standard Sign w/Flashing Beacon.

Results - Survey & Collision

• Participants reported not seeing advisories:

- 30% Standard sign group,
- 5% Standard sign with flashing beacon group,
- 18% VMS sign group, and
- 0% VMS and flashing beacon group.

Collision percentages:

- 15% in the standard sign group,
- 10% in the standard sign with flashing beacon group,
- 18% in the VMS group, and
- -5% in the combination VMS and flashing beacon group.

Conclusions

- All enhanced signage treatments resulted in decreased speeds and an increased onset of braking distance.
- VMS sign:
 - <u>statistically</u> significant reduction in speed over the standard sign.
- VMS & Flashing Beacon sign:
 - "Positively identified" most often,
 - Least number of collisions, and
 - Provided the greatest <u>statistically</u> significant onset of braking distance over standard sign.

Acknowledgements

 Jaime Eidswick, Mike Kelly, Jimmy Mehlos, Amy Galt, study participants, Virginia Tech Transportation Institute

QUESTIONS?