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1. Introduction 
This final report summarizes the literature review, analytical evaluation, and analysis of results for 

the Prefabricated Steel Truss Bridge Deck Systems project. A prototype bridge structure has been 

proposed as a potential alternative for accelerated bridge construction (ABC) projects in Montana. 

Accelerated bridge construction is rapidly gaining momentum in the United States as a common 

bridge building practice due to the increased safety and decreased impact on the public that results 

from the associated reduced construction times. The proposed system consists of a prefabricated 

welded steel truss topped with a composite concrete deck cast-in-place at the fabrication facility. 

These composite members are transported to the site, where they are set next to each other on a 

prepared foundation to create the bridge.  

1.1. Description of Proposed Prefabricated Bridge System 

Preliminary designs were completed by Allied Steel for three different prefabricated steel 

truss/integral concrete deck bridge systems intended for a 108 ft. bridge over Big Dry Creek 

(Jordan, MT) and two configurations of a 148 ft. bridge over Cooper Creek (Thompson Falls, MT). 

The prefabricated elements for these systems consist of a single truss supporting 10 ft. - 4 in.  (Big 

Dry Creek) and 7 ft. (Cooper Creek) wide concrete decks cast at the steel fabrication facility. 

Member sizes for these preliminary designs are shown in Table 1. 

Table 1: Prototype Bridge Systems 

Option Span Deck 
Thickness 

Top Chord 
Member 

Bottom Chord 
Member 

Vertical 
Member 

Diagonal 
Member 

Steel 
Weight 

1 148 ft. 7 in. WT12x38 WT18x97 / 
WT20x147 

HSS6x6 / 
HSS5x5 

LL5x3 / LL6x3 / 
LL7x4 29,100 lbs. 

2 148 ft. 7 in. WT12x38 WT18x97 / 
WT20x147 W8x15-31 W6x16 / 

W8x21-28 28,000 lbs. 

3 108 ft. 8-1/4 in. PL3/4x12 PL1-3/4x12 / 
PL2x6 W8x18-24 PL1x6 18,080 lbs. 

 
In all cases, the vertical and diagonal truss members are welded to the top and bottom chords of 

the steel truss. Two (or more) prefabricated elements are bolted together longitudinally to create 

the final bridge span. The longitudinal and transverse joints between the prefabricated elements 

are reinforced and filled with concrete to create continuity between the segments. A cross-section 

and elevation view of Option 1 is shown in Figure 1. 
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Figure 1: Proposed (a) Cross-Section and (b) Elevation of the Prefabricated Steel Truss Bridge Option 1 

1.2. Summary of Work 

The literature review identified the current state-of-practice related to the analysis, design, and 

construction of similar bridge systems constructed on an accelerated schedule. The review focused 

on four primary topics pertinent to the proposed bridge system and this project: 1) modular 

systems, 2) concrete decks, 3) welded connections subjected to fatigue, and 4) full-scale 

experimental studies.  

The objectives of the analytical evaluation were to 1) identify any impacts on the projected service 

life of the prototype truss bridge configurations based on fatigue of the welded member-to-member 

connections, 2) perform a cost analysis for the proposed systems and compare the results with the 

cost of plate girder alternatives, 3) as necessary and possible, suggest potential generic changes in 

member connection details to improve fatigue performance, and 4) for a  specific 205 ft. span, 

identify a steel truss bridge configuration with the greatest potential for material and construction 

(a) Cross-Section 

(b) Elevation 
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efficiencies. The 205 ft. span was selected so that these results could be readily compared with the 

Swan River plate girder project currently being designed by MDT.  

A bolted/welded prefabricated steel truss bridge was investigated as an alternative to the welded 

truss bridge. Use of bolted connections at selected locations in the trusses offers improved fatigue 

performance, allowing for lighter weight members, and making it a viable alternative for bridge 

replacement projects using either conventional or accelerated construction methods. The proposed 

system consists of bolted diagonal and welded vertical member connections to the top and bottom 

chords. Work completed includes 1) development of a 3D finite element model used to more 

accurately calculate the distribution of lane and truck loads to the truss members, 2) determination 

of  member sizes and connection geometry to satisfy AASHTO Strength I, Fatigue I, and Service 

II load combinations for both conventional and accelerated construction methods, and 3) 

estimation of potential cost savings related to materials, fabrication, and construction of these 

alternatives compared with the 205 ft. Swan River plate girders. 
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2. Literature Review 

In reviewing prefabricated bridge systems with a view toward investigating their deployment, four 

subject areas of interest were identified and researched in the literature:  1) modular steel systems, 

2) concrete decks, 3) welded connections subjected to fatigue, and 4) full-scale experimental 

studies. Each topic, discussed in the following subsections, was selected for its impact on the 

analysis, design and construction of a prefabricated steel-truss bridge in Montana. 

With these topics in mind, a thorough search was performed using four resource databases: 

Engineering Village, MDT Library, Transportation Research Board, and Google Scholar. The 

keyword “Prefabricated Bridges” was successfully combined with “Steel Truss,” and “Deck 

Systems” to identify potential works of interest. The articles were reviewed and further organized 

into categories related to the components of the proposed modular steel system.  This review and 

filtering process identified 22 sources (journal publications, trade journal articles, and state, 

federal, and private reports) as the most relevant to the proposed prefabricated steel truss bridge. 

2.1. Modular Steel Systems 

Prefabricated steel bridges have been constructed using a truss configuration, most notably in the 

Bailey Bridge and its successors. Other prefabricated steel systems include steel girders with 

composite concrete decks and composite space trusses. 

2.1.1. Steel Trusses 

One of the earliest forms of prefabricated bridges was the Bailey Bridge. Patented in 1943, the 

Bailey Bridge was designed by Sir Donald Bailey for use by the Allied Forces to build crossings 

during World War II (SDR Engineering Consultants 2005). A typical longitudinal section of a 

Bailey Bridge is shown in Figure 2. This section has a width of 10 ft. and a height of 4 ft. – 9 in. 

These sections, designed to fit in a standard military truck, are bolted together in the field at the 

top and bottom chords to form a through-truss bridge. Five different steel bridge configurations 

are available, using Standard Bailey Bridge System components (Figure 3). Constructing the 

Bailey Bridge can be done using a crane to hoist the assembled configuration in place or launching 

the structure from one side of the gap to be bridged as shown in Figure 4. Portable Bailey panel 

bridges are currently available from Bailey Bridges, Inc. 
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Figure 2: Detail of a Bailey Bridge Panel (Klaiber and Wipf 2004) 

 

Figure 3: Bailey Configurations (SDR Engineering Consultants 2005) 

 

Figure 4: Bailey Bridge Launching Diagram (SDR Engineering Consultants 2005) 

Since the expiration of the Bailey Bridge patent, Acrow Corporation of America and U.S. Bridge 

have developed modular bridge systems that are similar to the Bailey Bridge. These portable bridge 

configurations are often used for pedestrian bridges, although many state DOT’s, including 

Montana, have used them as temporary structures during bridge construction or in the event of an 

emergency. 
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The Acrow Panel Bridge is made up of three different stock items that are assembled to form the 

desired configuration. A photo of an Acrow bridge is shown in Figure 5. The truss segments are 

10 ft. wide, 7.2 ft. tall, and 6.5 in. wide. Spans of up to 230 ft. can be created by bolting the panels 

together and are capable of supporting three lanes of HS 25 load. Standard floor beams span 

between the trusses and decking panels span longitudinally along the bridge length between the 

floor beams. Prefabricated steel orthotropic panels are the most common deck type, although steel 

grids and timber options can be incorporated (Klaiber and Wipf 2004). 

 

Figure 5: Acrow Bridge assembled using Several Layers of Panels to Achieve the Span (Acrow 
Corporation of America 2015)  

The Bailey Bridge System has been used in Montana for several temporary crossings where 

bridges were damaged, deteriorated, or collapsed. A search of Montana’s Treasure State 

Endowment Program (TSEP) project applications and reports, the Department of Commerce 

project evaluations and funding recommendations, and the Department of Transportation bid 

packages revealed the following projects used prefabricated steel bridges (State of Montana 2016): 

• A 100 ft. span, double-single M2 Bailey Bridge configuration was installed over the 

existing bridge structure crossing Box Elder Creek, near Hammond, MT. Bids were 

received in August 2009 to replace the temporary structure with a permanent one. 

• Park County installed a temporary Bailey Bridge to replace the Ninth Street Bridge over 

the Yellowstone River in June 2008, in Livingston. The bridge was installed over the 

existing structure and was posted with a speed limit of 5 mph and a maximum vehicle 

weight of 3 tons.  



 7 

• A collapsed bridge over Fish Creek near Ryegate, in Golden Valley County, was replaced 

with a temporary Bailey Bridge. Bids were received in August 2014 to replace the 

temporary structure with 83 ft. pre-stressed bulb-tee beams. 

• TSEP emergency funds were used to construct a temporary Bailey Bridge over a damaged 

bridge crossing Racetrack Creek in Powell County (pre-2005) 

• Mineral County used a temporary Bailey Bridge over the 52 ft. damaged timber Cedar 

Creek Bridge (pre-2005). 

• In December of 2002, Madison County installed a Bailey Bridge over the deteriorating 

Upper South Boulder Bridge to provide a temporary crossing until a permanent solution 

could be implemented. 

The panel sizes, span lengths, and load capacities of the Bailey type bridges are consistent with 

the proposed systems considered in this investigation. Their long history demonstrates that 

modular prefabricated truss systems are an effective bridge construction strategy. That being said, 

these bridges are used in a through truss configuration, while the proposed systems use an 

underslung truss arrangement. The decks in these systems do not act compositely with the trusses, 

while composite action between the concrete decks and steel trusses in the proposed systems is 

expected to offer improved structural efficiency and stiffness.   

U.S. Bridge, a descendent of the Ohio Bridge Corporation, offers prefabricated truss options that 

are designed for the Association of State Highway and Transportation Officials (AASHTO) HS10, 

HS15, HS25, and HL93 loadings (U.S. Bridge 2015). Unlike the Bailey/Acrow Panel Bridge, 

where identical panel segments are bolted together in the field, the U.S. Bridge System uses longer, 

all-welded truss systems that can then be bolted together in the field. The trusses panels are 

prefabricated with standard W-sections and the entire welded segments are then hot-dipped 

galvanized (Klaiber and Wipf 2004). The trusses are through-type with parallel top and bottom 

chords and are available in standard lengths of up to 150 ft. For longer spans, a camel back 

configuration is used and is shown in Figure 6. A common deck system includes underslung floor 

beams carrying simply supported stringers. Traditional concrete filled pans and timber decks can 

also be provided. 
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Figure 6: US Bridge Design, the "Viking Bridge" (U.S. Bridge 2015) 

Completely prefabricating steel-truss bridge superstructures could potentially be a more cost- 

effective and permanent solution for counties that install temporary bridge structures. Albany 

County in New York State investigated this alternative to find cost-efficient bridge solutions in 

rural areas with lower traffic volumes (Heine 1990). The county replaced a 70 ft. truss bridge built 

in 1898 with Warren trusses and welded connections prefabricated by the Ohio Bridge 

Corporation. The estimated cost to install the bridge on the existing abutments was $50 per sq. ft. 

and included the cost of material, erection, and placement of a wooden deck. Bid prices were 5 to 

6 times this amount for a standard replacement (Heine 1990).   

A second example of a permanent welded prefabricated truss installation is the Crosier Bottom 

culvert in Meade County, Kentucky (McConahy 2004). The solution for the bridge replacement 

was a design-build process using 80 ft. prefabricated steel trusses (Figure 7). This alternative was 

substantially cheaper than a cast-in-place concrete bridge (McConahy 2004). The steel trusses 

were a U.S. Bridge product, and each truss was shipped in two 40-foot sections that were bolted 

together to form the final 80 ft. length and then lifted by crane onto the abutments. The bridge was 

finished with a cast-in-place concrete deck. The entire project, including a soil investigation, 

design, and construction was 30 days. A detailed timeline of the construction was not provided.  

The Crosier Bottom bridge replacement highlights the benefits that prefabricated steel trusses can 

provide. 
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Figure 7: Crosier Bottom Crossing (McConahy 2004) 

2.1.2. Rolled Wide-Flange Sections 

Another type of prefabricated modular system consists of wide-flange beams topped with a 

composite concrete deck, as shown in Figure 8. One such system, originally patented under the 

name “Inverset,” is now marketed by Fort Miller Co., Inc. (Schuylerville, NY) as Prefabricated 

Bridge Units (PBU). The composite system is similar to the proposed prefabricated system of the 

current study; however, the assemblies consist of two wide-flange sections, rather than steel 

trusses, topped with a concrete deck. Common or typical segment sizes are not provided on Fort 

Miller Company’s website. 

 

Figure 8: Prefabricated Wide-Flange Beams topped with a Composite Concrete Deck 

The PBU/Inverset system uses an innovative fabrication method to obtain a more efficient 

composite cross-section. The segments are cast in an upside down orientation, as shown in Figure 
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9, in such a manner that upon subsequent erection, stresses in the composite elements are near zero 

in the bottom steel flange and are tensile in the top concrete flange (Klaiber and Wipf 2004). The 

result is a more efficient section for short to medium span bridges where stresses are dominated 

by live loading. The Fort Miller PBU’s have been used for spans up to 126 ft. long with skews that 

exceed 45 degrees (Fort Miller Company 2016). The span and width of the prefabricated segments 

for this specific case was not provided. Keys cast in the overhanging slabs are grouted together 

with non-shrink grout during construction. A similar joint system was investigated by Au et al. 

(2008) and is discussed in the following section of this report. 

 

Figure 9: Prefabricated Bridge Units cast Upside-Down (Fort Miller Company 2016) 

The New York State Department of Transportation used PBUs for the north and south bound 

bridges over the Mohawk River to minimize disruptions of the 110,000 vehicles that use these 

bridges each day. Two hundred and twenty-four prefabricated assemblies were used, including 

assemblies with monolithically cast traffic barriers, which is the same concept proposed for the 

system considered herein. High-performance concrete was used for the longitudinal and transverse 

joints between modular units. Installation of the prefabricated members and one of the joints is 

shown in Figure 10. More recent installations of Fort Miller PBU’s are listed in Table 2. 

Table 2: Recent Bridge Installations using Fort Miller PBU's (Fort Miller Company 2016) 

Project Date No. of Longitudinal Segments Length 
Garden State Parkway, NJ April 2016 4 53 ft. 

Route 28, MA April 2016 4 90 ft. 
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Figure 10: I-87 Prefabricated Bridge Unit Installation, I-87 Bridge Reconstruction (Fort Miller Company 

2016) 

2.1.3. Space Trusses 

In an attempt to discover methods for reducing the weight of bridge superstructures for medium-

span (50 to 150 ft.) bridges, the French Highway Administration invested nearly 10 years of 

research before selecting a steel space truss design for demonstration deployment over the Roize 

River (Montens and O'Hagan 1992). The Roize Bridge was completed in 1990 and was the first 

structure to combine an innovative steel space truss with pre-stressed concrete deck panels. Similar 

to the proposed prefabricated system, the Roize Bridge used modular building methods and 

composite action between the space truss and concrete deck, with the concrete deck effectively 

acting as the “top chord” of the truss system. The bridge consisted of three spans; two 118 ft. end 

sections and a 131 ft. long center span. A typical cross-section and elevation view are shown in 

Figure 11. 

 

Figure 11: Roize Bridge Cross-Section and Elevation View (Muller 1993) 

The bottom chord of the space truss is a hexagonal cross section made of two bent steel plates 

joined by a continuous longitudinal weld (Figure 12). Four diagonals are welded to stiffeners in 

the bottom chord, forming two inclined Warren-type trusses. The top of the diagonals is welded to 

I-shaped transverse floor beams spaced at 13 ft. These 13 ft. long tetrahedrons (four diagonals, one 
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bottom chord, and one floor beam) were mass produced in the factory and assembled on-site.  Rigid 

nodes were created along the bridge deck by extending the inclined truss members through the 

transverse floor beams and into the deck closure pour. 

 

Figure 12: Space Truss Superstructure of the Roize Bridge (Muller 1993) 

The precast concrete deck panels were 40 ft. wide and 12 ft-4 in. in length. The panels were pre-

stressed with 54 - 0.5 in. bonded strands in the longitudinal direction and post-tensioned with two 

4-strand tendons located on either side of the floor beams after the closure joints were cast. After 

the bridge deck was assembled and cast, the superstructure assembly was continuously post-

tensioned with five external draped 12-strand tendons (Figure 12). The concrete was a high-

strength silica-fume with specified compression strength of 11.5 ksi. The combination of high-

strength concrete and draped longitudinal post-tensioning helped reduce the long-term creep 

effects due to flexural loads (Montens and O'Hagan 1992). 

The Lully Viaduct in Switzerland is a similar composite, prefabricated space truss bridge that was 

selected over two pre-stressed concrete box girder alternatives for its aesthetic qualities (Dauner 

et al. 1998). A typical cross-section and elevation view of this bridge is shown in Figure 13. 

Average spans of the 1000 m bridge were 43 m, and the space truss depth was 2.9 m. Circular 

pipes were used for all truss members and resulted in complicated node geometry that created 

challenges with cutting and preparing the member ends for full penetration welds. Special 

equipment was used to cut the contact and welding surfaces. The prefabricated space trusses were 

erected in one-half span lengths (22 m). Longitudinal and transverse post-tensioning was used after 

Hexagonal bottom chord 

External draped 
post-tensioned 
cables 

Diagonals 
forming inclined 
Warren trusses 

I-shaped 
floor beams 
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curing of the cast-in-place concrete deck.  Photos of the completed structure are shown in Figure 

14. 

 

Figure 13: Lully Viaduct Cross-Section and Elevation View, SI Dimensions (Dauner et al. 1998) 

 

Figure 14: Lully Viaduct Space Truss ((Dauner et al. 1998)) 

2.1.4. Modular System Comparison 

A detailed evaluation and assessment of six different modular bridge types was done by SDR 

Engineering Consultants (2005). Numerical ratings were assigned for each bridge in four 

categories of performance: aesthetics; design flexibility and service life; construction and erection; 

and future maintenance. The overall score was the summation of the ratings for each category and 

is shown in Table 3. On a scale of 0 – 100, scores ranged from a low value of 62 (temporary truss 

and permanent precast systems) to a high value of 87 (steel girders and concrete deck). The 

proposed prefabricated system being considered in this project has elements that are most similar 

to system 3, composite space truss, and system 4, steel girders and concrete deck, which ranked 

1st and 3rd, respectively, for the bridge systems considered by SDR. Unlike the proposed system 
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where the bridge is supported by the bottom chord, the under-slung truss (System 5) evaluated by 

SDR was supported by the top chord and was not as modular as the other bridge types considered. 

Table 3: Comparison of Modular Bridge Systems, adapted from SDR Engineering Consultants (2005) 

No. Bridge Type Unit Configurations 
and Aesthetics (30) 

Design Flexibility 
and 75-Year 

Service Life (25) 

Construction 
and Erection 

(25) 

Future 
Maintenance 

(20) 

Total 
Score 
(100) 

1 Temporary Truss and 
Permanent Precast System 21 15 18 8 62 

2 Railroad Flatcar 24 18 24 14 80 

3 Composite Space Truss 23 21 17 16 77 

4 Steel Girders and Concrete 
Deck 26 22 23 16 87 

5 Under-Slung Truss 17 19 21 13 70 

6 Cold-Formed Steel Plate 
Box 23 16 22 11 72 

The highest total score for the performance criteria shown in Table 3 was a bridge with steel girders 

with precast composite concrete decks (No. 4). For this reason, SDR investigated a new modular 

precast concrete system that is shown in Figure 15. To reduce live load deflections, SDR’s concept 

could also include continuity reinforcement at interior supports, as shown in Figure 16. 

 

 

Figure 15: Modular Precast Concrete Bridge Concept (SDR Engineering Consultants 2005) 

SDR also commented that the use of modular precast concrete systems can be limited by 

transportation constraints,  a general weight limit for traditional transportation is 200 kips, and that 

panel widths wider than 8 ft. require special permitting (SDR Engineering Consultants 2005).   

The third highest total score for the bridge types shown in Table 3 is a composite space truss. These 

systems have high strength and stiffness-to-weight ratios; however, their lack of standardized 

members and details leads to higher initial costs (SDR Engineering Consultants 2005). Despite 
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their high ranking, this option was not selected for further study by SDR. The research team 

contacted several bridge manufacturers to determine if fabrication of a space truss with existing 

equipment and fabrication techniques could be accomplished. All fabricators interviewed 

expressed reservations on the practicality of such a system. 

 

Figure 16: Continuous Precast Modular Bridge Concept (SDR Engineering Consultants 2005) 

The predominant discouragement to the widespread, continued use of modular bridges in the 

United States, despite growing prevalence in Europe and Asia, is the fatigue-sensitive nature of 

some of the details (SDR Engineering Consultants 2005). In addition, more complete, modular 

bridge systems such as those by Bailey Bridges, U.S. Bridge, Acrow, and Fort Miller may not be 

cost-effective due to the proprietary nature of their designs. 

2.2. Concrete Decks 

Several different concrete deck systems have been investigated for use in accelerated bridge 

construction. The systems were designed with the intent of reducing the time needed to construct 

a deck while maintaining equal or better performance and durability than conventionally 

constructed decks. These systems include precast, cast-in-place, and post-tensioned concrete 

decks. 
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2.2.1. Precast Concrete 

Advantages of precast concrete decks include quick installation and increased quality control with 

higher strength and performance concrete than typically is used in cast-in-place concrete decks. A 

concern with precast concrete decks is the durability and structural integrity of the joints between 

elements (Culmo 2011). The Ministry of Transportation in Ontario, Canada performed structural 

testing on reduced scale precast panel joints (Au et al. 2008) to investigate the performance of 

different joint configurations. The prefabricated bridge systems were selected to meet the 

requirements of one, two, or three-span bridges with spans ranging from 66 ft. to 164 ft. 

Two types of precast panel joints were investigated and are shown in Figure 17. System A 

consisted of a concrete deck precast on a single steel girder forming a T-shaped prefabricated 

member, similar to the proposed system. Closure strips for this deck system are located between 

the girder supports.  As an alternative to offset the potentially heavy and difficult-to-transport 

prefabricated T-shaped members, System B consisted of separate precast concrete deck panels that 

were attached to the pre-stressed or steel girders after they were placed at the bridge site. The panel 

closure strips were located over the girder. 

 

Figure 17: Typical Transverse Sections of Prefabricated Bridge System Models (Au et al. 2008) 
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Due to practical limitations (size effects, design criteria, laboratory restrictions, and material 

availability), the bridge specimens were constructed with one-third scale dimensions in the vertical 

direction, one-seventh scale in the longitudinal direction, and one-quarter scale in the transverse 

direction. The authors performed an analysis of both the prototype and scaled bridge models and 

determined the behavior of the two systems were similar. 

Two different joint configurations were constructed for each system. Specimens 1 and 2 for System 

A used different arrangements of top and bottom reinforcement, which are shown in Figure 18. 

Specimens 3 and 4 for System B utilized L-shaped and U-shaped reinforcement within the closure 

strip over the steel girders, which also are shown Figure 18. 

 

Figure 18: Closure Strip Details for Four Configurations Considered (Au et al. 2008) 

A total of 7 million load cycles were applied to Specimens 1 through 3. Specimen 4 was subjected 

to a total of 16 million load cycles. To investigate the condition of the specimens during the cyclic 

tests, a static load test was performed after every 1 million cycles of loading. After all cyclic load 

tests, punching load tests were performed to determine the post-elastic behavior of the specimens 

by applying a concentrated load over an area that represented a single wheel. Several loading and 

unloading cycles were completed before the maximum failure load was reached.   

The experimental program concluded that 1) long-term performance of the longitudinal joints was 

acceptable, 2) higher transverse deck stiffness was achieved when the longitudinal joints were 

located over the beams, and 3) the smooth bars used in the closure strip in Specimen 2 had a lower 

initial stiffness. 

Successful or unsuccessful applications of this type of structural system were not found in the 

literature; however, a similar bridge system was recently constructed over Maxwell Coulee, 22 

miles East of Jordan, MT. The bridge was 38 ft. – 4 in. wide by 100 ft. long and construction was 
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completed in 2013. The bridge is currently being evaluated and a final report on the bridge 

performance is due in 2017 (Montana Department of Transportation 2012). 

2.2.2. Post-Tensioned Concrete 
Transverse post-tensioning in concrete deck slabs is a common method for connecting precast 

concrete segments and could be used with the proposed bridge system.  The tendons could be 

threaded through ducts in the prefabricated slab and grouted after post-tensioning.  Research has 

shown that transverse post-tensioning improves the performance of the shear key joint and the 

durability of the bridge decks by reducing the number and width of cracks (Grace et al. 2012; 

Poston 1984).  Satisfactory performance of transverse post-tensioned joints was observed in an 

experimental program conducted on a precast concrete deck panel system subjected to static and 

fatigue loading (Yamane et al. 1995).  This deck system was designed and developed specifically 

for rapid construction and rehabilitation. 

One of the challenges with post-tensioning deck panels assembled on site are construction 

tolerances.  In a case study in Michigan (Attanayake et al. 2014), post-tensioning ducts were 

misaligned because the skew of the bridge was not correctly considered.  When placing the precast 

panels on the pre-stressed bridge girders, some of the shear connector pockets did not provide 

enough tolerance for the twist (sweep) of the beams.  This particular case study demonstrated the 

importance of providing adequate tolerances on precast members for efficient construction. 

2.2.3. Cast-In-Place Concrete 
Full-depth cast-in-place concrete decks are not a viable option for accelerated bridge construction 

due to the formwork and shoring required during construction. A partial-depth cast-in-place system 

that includes a precast or pre-manufactured form system could mitigate some of these construction 

issues, and result in a cast-in-place top surface that minimizes joints on the surface of the deck. 

Such a concept was studied by SDR (2005), where a cold-formed steel plate is welded to steel 

girders to form a metal stay-in-place form as shown in Figure 19. The metal form acts as tension 

reinforcement for the composite system. A welded wire mesh-reinforcing cage is welded to the 

steel plate at the factory and acts as top reinforcement for the slab. 

On-site, the form and reinforcement assemblies are bolted together in the longitudinal and 

transverse directions. A mat of steel mesh is then placed over the top of the joint to splice the 

reinforcement meshes together. This new concept was selected by SDR for further study because 
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like the modular precast system described above, it also falls into the steel girder and concrete deck 

bridge type that had the highest total score in their evaluation and assessment (System No. 4 in 

Table 3). 

 

Figure 19: Proposed Cross-Section for a Cast-In-Place Concrete Deck without Formwork (SDR 
Engineering Consultants 2005) 

2.3. Welded Connections Subjected to Fatigue 

Fatigue in steel and notably in welded steel connections is always a concern in cyclic loading 

environments, which is an obvious consideration with the composite steel truss/concrete deck 

modular system being studied in this project.  The welded connection types included in the 

proposed prefabricated system are longitudinal welds in a knife-plate configuration and transverse 

welds made at the ends of the vertical and diagonal web members.  The research summarized 

below identifies recent articles related to connection geometry and weld configuration that can be 

applied to the investigation of the proposed system. 

2.3.1. Connection Geometry 

Extensive testing was carried out at the University of Texas at Austin with regard to fatigue 

strength of welded connections used in steel bridges (Battistini et al. 2014). The experimental 

program investigated the fatigue performance of five cross-frame connection configurations by 

measuring stiffness, ultimate strength, and fatigue resistance. The project objectives were to 

determine the connection type that was most economical to fabricate and construct, while still 

providing adequate strength and stiffness for the connecting members.  

The five connections tested (Figure 20) were the (a) T-stem, (b) knife plate without a stress relief 

hole, (c) knife plate with a stress relief hole, (d) double angle, and (e) single angle. A stress relief 
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hole was included in three of the six knife plate specimens to mitigate stress concentrations at the 

forward edge of the fillet weld. The T-stem variations tested did not reach the minimum AASHTO 

connection fatigue requirement (E) and are not included in this review. In addition, because the 

back-to-back single-angle connection performance was similar to the double angle, the remainder 

of this section will focus on the two knife plate connections (b, c) and the double- angle connection 

(d) shown in Figure 20. 

 

Figure 20: Connection Configurations Tested (Battistini et al. 2014) 

Many of the results presented were related to the specific behavior of different brace 

configurations, such as X-, Z-, and K-frames. Improvements to fatigue behavior were observed in 

some of these frame configurations when thicker center gusset plates were used and when an 

additional transverse weld was included on the reverse side of the angle. The following specific 

conclusions were made related to the fatigue tests and welded connections: 

• The T-stem connections (square, round, and diamond) had poor fatigue performance, likely 

due to a small local eccentricity that existed in the geometry. 

• The knife plate connection performed adequately in fatigue, with 5 of the 6 specimens 

achieving E classification; the stress relief hole further increased the connection fatigue 

life. 

• The double angles achieved connection E classification. The fatigue cracking initiated in 

the angle when the member stress range was larger than the gusset plate stress range. 

(a) T-Stem (b) Knife Plate 
(KP) 

(c) KP with 
Stress Relief 

(d) Double-Angle (e) Single-Angle 
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• The measured fatigue life of the connections tested in this study correlated well with the 

tabulated fatigue categories provided by AASHTO for common connection geometries. 

2.3.2. Weld Configuration 

The influence of weld geometry was investigated by McDonald and Frank (2009) to determine if 

balanced welds had an influence on the fatigue strength of single-angle connections.  This study 

attempted to estimate fatigue performance based on the geometry and the angle of connection. The 

specimens consisted of single-angle members attached to a plate on each end as shown in Figure 

21. 

 

Figure 21: Angle-Plate Cross-Frame Specimens (McDonald and Frank 2009) 

A total of 25 specimens and 6 weld configurations were tested, with a stress range from 8-12 ksi 

in fatigue by applying axial load to the two end plates. Both eccentric and balanced welds with 

short and long angle legs welded to the plate were included.  The balanced welds were detailed to 

meet the requirements of AASHTO (2012). The conclusions of the study noted the balanced welds 

consistently performed better than specimens with equal length welds; however, due to the fact 

that angle and plate length varied, it was inconclusive as to whether the balancing of welds or 

frame geometry led to improved fatigue performance. 

A parametric study using finite element analysis (FEA) was also performed by McDonald and 

Frank (2009) to investigate the factors affecting the stress concentrations in the steel plate 

connected to the single angles. The results of the parametric study suggested that the factor with 

the highest influence on the stress concentration was the length of the outstanding leg of the angle. 

Battistini et al. (2014) focused their parametric analysis on the relationship of the axial stiffness 

reduction factor for a single angle cross frame. They concluded that the length of the diagonal 
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member of a frame affects the stiffness as well, with a longer diagonal increasing the magnitude 

of the reduction factor. 

2.4. Full-Scale Experimental Studies 

Full-scale tests on bridge systems with elements similar to those being investigated here were 

identified in the literature and provide information relevant to the strength and analytical modeling 

aspects of steel trusses. 

Research by King et al. (2013) included laboratory load tests on two full-scale, Bailey bridge 

segments. Two 10 ft. panel segments (Figure 2) were pin-connected to form 20 ft. spans for each 

specimen. A vertical load was applied through a thick plate on both sides of the top chord at the 

central nodes. The test specimen and experimental setup are shown in Figure 22. Lateral buckling 

was observed in the top chord members adjacent to the central node at a load of 500 kN and 507 

kN for the two specimens. 

 

Figure 22: Full-Scale Bailey Bridge Model (King et al. 2013) 

A comparison was made with the AASHTO specifications (2012) for members that failed by 

lateral buckling. The ratio of tested capacity (Ptest) to the calculated nominal strength (Pn) ranged 

from 0.81 to 1.1 and showed that AASHTO generally recommends conservative design strengths 

for members in compression (King et al. 2013). The composite concrete deck will brace the top 

chord compression members for the proposed prefabricated truss; however, the conservative 

strength predictions by AASHTO are relevant to the diagonal members in compression. 

Based on test results of the two specimens and isolated tests of the individual connections, elastic 

and nonlinear analyses were performed. From the elastic analysis, it was found that the effect of 
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partial fixity of the connections was not significant due to the connections remaining elastic during 

the test. Results from the 2D nonlinear analysis compared well with the measured load 

displacement response, but the predicted capacity was higher because the model could not capture 

the out-of-plane stability behavior that was observed in the test (King et al. 2013). 

A second full-scale experimental investigation was performed on the Hillsville Truss bridge over 

the New River in Virginia (Hickey et al. 2009) shown in Figure 23. The objective of the study was 

to calibrate an analytical model that was used to estimate loads that could cause the bridge to 

collapse. This study was part of a larger endeavor to better understand the collapse of the I-35W 

Bridge in Minneapolis, Minnesota by conducting field tests and detailed structural analysis on a 

similar bridge. The Hillsville Truss was similar to other mid-twentieth century steel truss bridges 

that used riveted gusset plate connections between members. 

 

Figure 23: Hillsville Truss (Hickey et al. 2009) 

Loaded trucks with known dimensions and weights were parked along the bridge, and strain 

gauges were strategically placed to record various member strains. The field test results were used 

to calibrate a 2-dimensional linear elastic steel truss bridge model, after which a failure analysis 

was conducted. The truss model with simple connections at the joints did not correlate with the 

data, so the model was updated to a frame model where bending moments could be included. 

Adding the transverse floor beams and stringer elements to the frame model resulted in calculated 

results that most closely correlated with the collected data (Hickey et al. 2009). The authors 

concluded that the models provided evidence that moment was being transferred through the 
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connections of the truss members, and therefore the connections should be evaluated to include 

flexural stresses. 

An important observation from the analytical modeling of the Bailey Bridge segments and 

Hillsville Truss is that different conclusions were made related to the restraint provided by the 

connections. The welded connections for the Bailey Bridge did not provide significant restraint to 

member rotations and the results suggested the connections could be modeled as pinned. The 

pinned connections assumed in the riveted gusset plate connections of the Hillsville Truss 

however, did not compare well with the measured data and additional connection restraint was 

necessary. These are important observations for the analytical modeling task of the current 

research project and will be included in the analysis of the proposed prefabricated system. 

2.5. Summary 

The proposed prototype bridge structure consists of a prefabricated welded steel truss with a 

composite concrete deck, cast-in-place at the fabrication facility. These modular elements are then 

transported to the site, where they are lifted onto the foundation. This specific bridge and 

prefabricated construction technique is not well represented in the literature, and thus there is a 

need to identify potential bridge spans and traffic volumes where the proposed system is viable 

and economical. The most applicable information obtained from the literature review for this 

project is summarized below. 

• The most common application for modular prefabricated steel truss systems has been for 

temporary bridge crossings. Two cases of permanent welded truss bridge replacement 

projects (Heine 1990; McConahy 2004) were identified in the literature for short spans 

with low-volume traffic. For these projects, these systems were significantly more 

economical than traditional solutions. 

• Several investigations have been performed on details of longitudinal and transverse joints 

between prefabricated elements. This research has resulted in recommendations on joint 

configurations by the American Concrete Institute (Austin et al. 2001) and AASHTO 

(Culmo 2009). 
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• Measured fatigue stresses for a connection configuration similar to one of the proposed 

welded connections by Allied steel were consistent with the AASHTO (2012) Fatigue 

Detail Category E (Battistini et al. 2014). 

• Full-scale experimental investigations of two steel truss bridges resulted in different 

conclusions related to the degree of rotational restraint provided by the truss connections. 

In one study, partial fixity of the connections was not significant (King et al. 2013). A study 

by Hickey et al. (2009), found that modeling the restraint at the connections was necessary 

to match the measured stresses in the full-scale bridges. 

With these observations in mind, the service life, fatigue strength, and joint restraint of the 

proposed welded steel trusses were included in the following analytical evaluation. 
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3. Analytical Evaluation 

The analytical evaluation was performed to 1) identify any impacts on the projected service life of 

the prototype truss bridge configurations based on fatigue of the welded member-to-member 

connections, 2) perform a cost analysis for the proposed systems and compare the results with the 

cost of a plate girder alternative, 3) as necessary and possible, suggest potential generic changes 

in member connection details to improve fatigue performance, and 4) for a specific 205 ft. span, 

identify a steel truss bridge configuration with the greatest potential for material and construction 

efficiencies. The 205 ft. span was selected so that these results could be readily compared with the 

Swan River plate girder project currently being designed by MDT.  

3.1. Projected Fatigue Impacts of the Welded Member-to-Member Connections 
Of the three proposed bridge options shown in Table 1, the longer spans of Options 1 and 2 were 

identified by MDT to be more representative bridge spans in Montana.  For this reason, Option 1 

shown in Figure 1 was selected to make a preliminary assessment of the load-induced fatigue 

stresses on the welded connections.  Steps involved in executing this assessment consisted of 

developing a 2D finite element model of a typical subsection of the bridge system, determining 

appropriate factors to distribute applied loads to this subsection of the system, identifying fatigue 

life stress thresholds, and comparing predicted stress levels at various locations in the system as 

determined from the 2D finite element model with these fatigue life stress thresholds.   

3.1.1. 2D Finite Element Model 
A two-dimensional model shown in Figure 24 was created using the program SAP2000, a finite 

element program by Computers and Structures, Inc. The restraints at the ends of the diagonal and 

vertical truss members were released to create pinned connections as permitted by AASHTO 

Section 4.6.2.4. The top and bottom chords were modeled as both pinned and fixed connections to 

evaluate the effects of the continuous members per AASHTO section 4.6.3.5. A comparison 

between the two conditions resulted in member forces that were within 5%.  Pinned connections 

were subsequently used for the bottom chord.  A continuous member was used for the top chord 

because the member is fabricated as continuous, and loads are applied from the concrete deck slab 

between panel points. The 7 ft. wide concrete deck was connected to the top chord of the steel 

truss with link elements at the panel points to generate composite action of the deck and steel truss 

below. Calculated self-weight deflections from this model were 2.5 in. (L/710) and were in 
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reasonable agreement (~10%) with approximate hand calculations and the estimated dead load 

deflections of 2.7 in. (L/660) shown on the Allied Steel drawings. The diagonal and bottom chord 

tension members that were the focus of this preliminary analysis are labeled in Figure 24. The 

AASHTO Fatigue I load combination considered with the un-factored permanent loads did not 

produce stress reversals in the vertical compression members, and therefore design for fatigue and 

fracture was not required for these members (AASHTO Section 6.6.1.2.1). 

 

Figure 24: SAP2000 Model with Diagonal and Bottom Chord Tension Member Labels 

3.1.2. Distribution Factors 
The lever rule was used to distribute the axle and lane loads in the transverse direction. The joints 

connecting the pre-fabricated segments were assumed to create a continuous member spanning 

between the trusses. The loading diagrams used for an interior truss are shown in Figure 25 and 

Figure 26. Two loaded lanes were considered with the Strength I load combination and resulted in 

a distribution factor of 0.79.  The distribution factor calculated with fatigue load combinations 

using a single loaded lane is 0.57. 

 

Figure 25: AASHTO Lever Rule Loading Diagram for Strength I Load Combination with Two Lanes 
Loaded 

3.1.3. Fatigue Thresholds 

In fatigue analysis, the threshold stress a member can experience is significantly affected by the 

fatigue susceptibility of the basic connection configuration, and the number of load cycles it will 

experience over its design life.  Considering first the fatigue susceptibility of the basic connection 

to be used in this truss system, the situations of interest both fall in AASHTO (2014) Detail 

Category E’. A typical welded connection detail in the proposed steel truss is shown in Figure 27. 

1 2 3 4 5 6 7 8 9 10 

11 12 
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Both the diagonal and bottom chord tension members were evaluated for fracture and fatigue limit 

states at the largest tension load occurring in the diagonal member at the end panel point.  

Illustrative examples of the relevant detail categories for these members from AASHTO Table 

6.6.1.2.3 are shown in Figure 28a for the bottom chord member and Figure 28b for the diagonal 

members. 

 

Figure 26: AASHTO Lever Rule Loading Diagram for Fatigue Load Combination with One Lane Loaded 

 
Figure 27: Proposed Connection Detail 

 

 
Figure 28: Connection Examples of Detail Category E’ for Longitudinally Loaded Welded Attachments 

(AASHTO, 2014 Table 6.6.1.2.3-1 Description 7.1-7.2) 

 

(a) (b) 
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The cross-section geometry of the truss members and the required weld lengths result in a Detail 

Category E’ designation for both the bottom chord and diagonal members shown in Figure 27.  

Relative to associated fatigue environment and attendant design life, one situation of interest is to 

keep stresses below the threshold for an infinite-life design. The stress threshold for an infinite-

life design for Detail Category E’ is 2.6 ksi using the Fatigue I load combination (AASHTO Table 

6.6.1.2.3-1).   

A second situation of interest is a finite-life design of 75-years, which is addressed by the Fatigue 

II load combination. The associated fatigue stress threshold is dependent on the expected number 

of fatigue cycles across a 75-year design life, as reflected by the projected single-lane average 

daily truck traffic (AADT). Thus, to determine this stress threshold, some level of assumed traffic 

is necessary. In this case, the fatigue demands on a bridge over Maxwell Coulee on Highway 200 

by Jordan, MT were considered. This bridge is a prefabricated structure installed in 2013 by MDT, 

and is representative of at least one situation in which the proposed steel truss/composite deck 

system would be used. 

Current traffic data was obtained from MDT’s website for three different bridge crossings on Hwy 

200 east of Jordan, MT. The AADT for each bridge was approximately 500 vehicles in 2014. 

Assuming a value for the traffic growth factor of two (which corresponds to a growth rate of 1 

percent per year), an expected average AADT of 1,000 over a 75-year design life was determined. 

An estimated AADT value was obtained by assuming 15% of average daily traffic (ADT) were 

trucks (AASHTO Table C3.6.1.4.2-1).  

Based on the above assumptions, a 75-year design life threshold fatigue stress of 4.6 ksi was 

determined (AASHTO Section 3.6.1.4), which is approximately 1.8 times higher than the infinite 

design life stress threshold of 2.6 ksi determined above. 

3.1.4. Calculated Stresses Versus Stress Thresholds 
Three AASHTO load combinations were used in the preliminary analysis of the proposed 

prefabricated bridge. The impact, distribution, and multiple presence factors applied to the design 

truck and tandem loads with AASHTO’s Strength I, Fatigue I and Fatigue II combinations are 

summarized in Table 4. 
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Table 4: Factors Applied in Analytical Model 

Load 
Combination Load Impact Factor Multiple Presence 

Factor, m 
Distribution 

Factor 
Load 

Factor 

Strength I 

Dead Load NA NA NA 1.25 
Design Lane Load NA 1.00 0.79 1.75 

Design Truck 1.33 1.00 0.79 1.75 
Design Tandem 1.33 1.00 0.79 1.75 

Fatigue I Design Truck 1.15 NA 0.57 1.50 
Fatigue II Design Truck 1.15 NA 0.57 0.75 

 
3.1.4.1. Strength I Load Combination 

The Strength I load combination results for the diagonal members are shown in Figure 29.  Member 

labels on the x-axis of this figure correspond with the member numbers shown in Figure 24 above. 

The preliminary analysis suggests that 8 of the 12 diagonals and both bottom chord members 

proportioned by Allied Steel satisfy tension yielding of the gross section. Four diagonal members 

may require slightly larger cross-sections. 

 

Figure 29: Axial Stress in the Diagonal and Bottom Chord Members for the Strength I Load Combination 

3.1.4.2. Fatigue I Load Combination 

Calculated axial loads from the Strength I load combination were used to estimate required weld 

lengths to include the effect of connection geometry on load-induced fatigue stresses. The effective 



 31 

stresses calculated with the Fatigue I load combination for the diagonal and bottom chord members 

are shown in Figure 30. This preliminary analysis suggests that diagonal and bottom chord 

members are inadequate for an infinite-life design using the Fatigue I load combination threshold 

of 2.6 ksi for Detail Category E’. 

 
Figure 30: Axial Stress in the Diagonal and Bottom Chord Members for the Fatigue I Load Combination 

3.1.4.3. Fatigue II Load Combination 
Calculated effective stresses using the Fatigue II load combination for the diagonal and bottom 

chord members are shown in Figure 31.  The results suggest that 9 of the 10 diagonals and one 

bottom chord member are not adequate for a finite-life design of 75-years using the Fatigue II load 

combination threshold of 4.6 ksi. 

3.2. Materials and Fabrication Costs 

Before further pursuing the prefabricated welded steel truss options, the cost of materials and 

fabrication were investigated, to determine if these options indeed offered some degree of 

economic advantage over alternative systems, as was generally expected. The truss configurations 

shown in Table 1 specifically were considered, notably in comparison with material and 

fabrication costs for equivalent steel plate girder systems. A preliminary design was completed for 

a 148 ft. plate girder with transverse stiffeners using the same span and depth of Options 1 and 2 

(Table 1). An elevation view of the plate girder is shown in Figure 32. 



 32 

 

Figure 31: Axial Stress in the Diagonal and Bottom Chord Members for the Fatigue II Load Combination 

 

Figure 32: Elevation View of Plate Girder 

Fabrication and cost information was obtained from AVEVA (Denver, CO), a supplier of software 

solutions and services to the steel fabrication industry, RTI Fabrication (Plains, MT) and Allied 

Steel Co. (Lewistown, MT). Note that based on conversations with all three companies, Option 3 

(Table 1) was identified as non-viable due to the difficulty of fabricating the connections between 

the web and chord members of this configuration. The cost of cutting and beveling the vertical and 

diagonal members to make partial penetration welds to the top and bottom chord plates would be 

significantly more expensive than the fillet weld member connections used in the other two truss 

configurations. For this reason, Option 3 is not included in the cost comparison described below. 

3.2.1. AVEVA 

AVEVA provided the most detailed cost estimate for the two truss and plate girder options. Their 

cost-estimating software includes separate approximations for materials, labor, and fabricator 
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profit to obtain the total cost. The cost estimates for the truss and girder options provided by 

AVEVA are summarized in Table 5. 

Table 5: AVEVA Price Estimates 

  Option 1 Option 2 Plate Girder 

Weight 29,100 lbs. 28,800 lbs. 36,560 lbs. 
Material Cost $34,940  $36,640  $35,720  

Labor Cost $5,020  $3,940  $6,120  
Fabricator Profit $5,900  $6,390  $6,280  

Total Price $45,950  $43,210  $48,120  

3.2.2. RTI Fabrication 

RTI Fabrication (Plains, MT) provided a cost estimate based on the total weight of steel used for 

each alternative. Their estimated price range was $1.30/lb. to $1.50/lb. for the total cost of material 

and fabrication. An average of $1.40/lb. was used to determine the cost estimates shown in Table 

6. 

Table 6: RTI Fabrication Price Estimates 

  Option 1 Option 2 Plate Girder 

Total Weight 29,100 lbs. 28,800 lbs. 36,560 lbs. 

RTI Fabrication $40,740  $40,320  $51,190  

3.2.3. Allied Steel 

Allied Steel did not offer a price for each truss but instead estimated a savings of approximately 

15% for the two truss options compared with the plate girder cost, based simply on the total weight 

of steel in each alternative. 

3.2.4. Price Estimate Summary 

To compare the costs from the three sources described above, a plate girder price is needed to 

calculate Allied Steel’s 15% savings estimate.  This was accomplished by using the average cost 

of the plate girder prices provided by AVEVA and RTI Fabrication and reducing it by 15%.  A 

summary of the cost estimates can be seen in Table 7. 
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Table 7: Steel Price Estimates 

  Option 1 Option 2 Plate Girder % Difference (minimum) 
AVEVA $45,950  $43,210  $48,120  5 

RTI Fabrication $40,740  $40,320  $51,190  20 
Allied Steel $42,210  $42,210  $49,660  15 

 

It is important to recognize the potential variation of the cost estimates shown in Table 7. For 

example, specific fabrication procedures for RTI Fabrication and Allied Steel may be included in 

their estimates, but only approximated by costs provided by AVEVA. In addition, different shops 

may specialize in certain types of fabrication and these efficiencies may not be accurately included 

in the estimates above. Despite the potential sources for variation, the prices shown in Table 7 

suggest the two steel trusses range from approximately 5% to 20% less than a comparable plate 

girder. 

3.3. Alternative Truss Configurations 

Based on further discussion with Allied Steel and AVEVA and the desire to improve the fatigue 

performance, revisions were made to the proposed truss members and their connections. Allied 

Steel suggested that a truss utilizing double-angle diagonal members and wide-flange vertical 

members could be more economical. In addition, a bolted connection between the diagonal 

member and top and bottom chord would improve the fatigue performance of the connection to 

meet infinite-life design requirements using AASHTO’s Fatigue I load combination. This bolted 

connection geometry results in an AASHTO (2014) Detail Category B and is shown in Figure 33. 

The stress threshold for the Fatigue I load combination for Detail Category B is 16 ksi and is a 

significant improvement over the 2.6 ksi threshold for the welded connection with a Detail 

Category E’. 

 

Figure 33: Diagonal Member Connection Examples of Detail Category B for Longitudinally Loaded 
Bolted Attachments (AASHTO 2014 Table 6.6.1.2.3-1 Description 2.5) 
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The welded knife-plate connection between the wide-flange vertical member and the web of the 

top and bottom chord WT-sections is most closely represented by AASHTO (2014) Detail 

Category C’ shown in Figure 34.  The stress threshold for the Fatigue I load combination is 12 ksi. 

 

Figure 34: Example of Detail Category C’ for Longitudinally Loaded Bottom Chord with Transverse 
Welded Attachments (AASHTO, 2014 Table 6.6.1.2.3-1 Description 4.1) 

A drawing of a single truss panel showing the wide flange vertical members for this new option is 

shown in Figure 35. 

 

Figure 35: Typical Panel Layout of Option 4 

To further explore this new truss configuration (Option 4) a preliminary design was completed for 

the 148 ft. span using the AASHTO Strength I load combination. The weight comparison for the 

three truss options and the plate girder are shown in Table 8. 

Table 8: Weight Comparison 

Span Option 1 Option 2 Option 4 Plate Girder 

148 ft. 29,100 lbs. 28,800 lbs. 30,000 lbs. 36,560 lbs. 
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Although the preliminary design indicates Option 4 is slightly heavier than Options 1 and 2, the 

lower price-per-pound for wide-flange material compared with hollow structural shapes could 

contribute to a more-economical truss. 

Before continuing with the fatigue analysis for the new truss configuration, three additional bridge 

spans were analyzed and compared with the plate girder to evaluate the change in steel weight for 

different span lengths. A preliminary design was performed for 100 ft., 125 ft., and 193 ft. spans 

to determine the truss member sizes and plate girder proportions for each span. The apparent 

random 193 ft. span was selected to match a recently constructed plate girder project by MDT in 

which the actual girder weight was used.  A plot of steel weight vs. span length is shown in Figure 

36.  The difference between the total weight of steel for the two systems increases for larger spans. 

 
Figure 36: Comparison of Truss and Plate Girder Weight as Span Changes 

3.4. 205 ft. Truss Design 
A 205 ft. steel truss span was selected for further consideration in this study, as MDT is currently 

designing a 205 ft. plate girder bridge for the Swan River crossing. To improve the fatigue response 

of the steel truss, bolted connections were used between the diagonal members and top and bottom 

chords. The vertical wide-flanges were assumed to be welded to the top and bottom chord. Double-

channel sections were selected as the diagonal members to improve the connection geometry for 

the bolted connections. The spacing of the trusses was 8.75 ft. and the concrete deck was 8 in. 

thick to match the plate girder design by MDT. The preliminary truss member sizes are shown in 

Table 9. The finite element program SAP2000 was again used for the analysis of this new truss 
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system with the same modeling parameters as the 148 ft. model (Section 3.1).  An elevation view 

of the bridge is shown in Figure 37. A bolted connection detail was designed based on the largest 

tension demand due to the fracture limit state.  The bolted connection geometry is shown in Figure 

38.  The distribution factor calculated using the lever rule for the 205 ft. configuration was 0.93 

for the Strength I load combination using two loaded lanes (Figure 25). 

Table 9: 205 ft. Bolted/Welded Steel Truss Properties 

Span Deck 
Thickness 

Top Chord 
Member 

Bottom Chord 
Member 

Vertical 
Member Diagonal Member Steel Weight 

205 ft. 8 in. WT16.5x65 WT20x162 / 
WT16.5x193.5 W10x39 MC10x33.6 / 

MC10x25 / MC8x18.7 69,000 lbs. 

 

 

Figure 37: 205 ft. Bolted/Welded Steel Truss Elevation View 

 

Figure 38: Bolted Connection Detail 

Results indicate that the new truss members and bolted connection configuration satisfy strength 

and fatigue requirements for an infinite-life design. Tensile stresses in the diagonal members and 

bottom chord members are shown in Figure 39 relative to their design yield stresses of 34.2 and 
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47.5 ksi, respectively, for the Strength I load combination. Tensile stresses in the diagonal and 

bottom chord members are shown in Figure 40 relative to the 16 ksi and 12 ksi thresholds for the 

diagonal and bottom chord tension members using the Fatigue I load combination. 

 

Figure 39: Axial Stress in the Diagonal and Bottom Chord Members with the Bolted Connection for the 
Strength I Load Combination 

 

Figure 40: Axial Stress in the Diagonal and Bottom Chord Members with the Bolted Connection for the 
Fatigue I Load Combination 
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3.5. Summary 
A preliminary analysis of a 148 ft. span prefabricated steel truss system was completed using 

AASHTO’s Strength I, Fatigue I, and Fatigue II load combinations. Results indicate that 4 of the 

12 diagonal truss members may need larger cross-sections to meet Strength I requirements. Load-

induced fatigue stresses for the Fatigue I load combination exceed threshold values by a factor of 

approximately 4.0 for an infinite-life design. For a 75-year design life using Fatigue II load 

combinations, fatigues stresses exceed threshold values by approximately 18% based on measured 

traffic on Hwy 200 East of Jordan, MT. 

Material and fabrication cost estimates were obtained from three sources for two of the 148 ft. 

truss configurations and a comparable plate girder. The estimates suggest the welded steel truss 

options cost approximately 5% to 20% less than a comparable plate girder. 

Based on discussions with Allied Steel and AVEVA, and based on the projected fatigue 

performance of the initial truss options, a new truss configuration was identified. The new 

configuration includes more economical wide flange vertical members and bolted diagonal 

member connections to improve fatigue performance. The bolted connections meet Detail 

Category B requirements from AASHTO and have a threshold fatigue stress that is approximately 

6.0 times greater than the welded connection Detail Category E’. A preliminary design of a 205 ft. 

steel truss was compared with a comparable plate girder designed by MDT for the Swan River 

crossing. Results indicate the bolted/welded steel truss is approximately 24% lighter than the plate 

girder.  
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4. Analysis of Results 

The preliminary analysis and design of a 205 ft. steel truss bridge using the geometry of the Swan 

River plate girder bridge indicate the prefabricated truss alternative with bolted connections 

between the diagonal members and chords satisfies AASHTO fatigue requirements for an infinite 

life design. To further investigate the potential material and fabrication cost savings for the lighter 

truss system, a three-dimensional finite element model was created to more accurately estimate 

the distribution of multiple lane and axle loads to the trusses in the system and attendant individual 

truss members. The resulting load distribution, less conservative than that calculated using the 

lever rule, was then used to determine design demands on individual truss members and 

connections for the Strength I, Service II, and Fatigue I load combinations. Two truss 

configurations were evaluated. The first was a conventional construction alternative where the 

concrete deck is cast after truss erection at the site. The second configuration utilized accelerated 

construction where the concrete deck is cast prior to shipping the prefabricated system to the bridge 

site. Member sizes were subsequently selected for both truss configurations, and selected 

connection details determined.  Updated materials and fabrication costs were subsequently 

obtained from Allied Steel, AVEVA, and RTI, Inc.  Potential construction and erection advantages 

for the two truss configurations are compared with the planned plate girder construction for the 

Swan River project. 

4.1. Refined Analysis Approach 

SAP2000 was used to create a 3D finite element model of the Swan River Bridge that consisted of 

a 205 ft. span and a roadway width of 40 ft (see Figure 41). Grade 50 steel was used for the WT 

and wide flange cross sections, and Grade 36 steel was used for the diagonal channel members. 

The 8 in. concrete deck was modeled with approximately 1 ft. by ft.  shell elements. Concrete 

strength was 4000 psi. To simplify modeling and appropriately generate composite action, the slab 

and top chord elements were coincidently located at the composite neutral axis. An effective 

moment of inertia of one-half of the gross moment inertia (Ie = 0.5Ig) was used for the concrete 

slab in the transverse direction (consistent with a cracked cross-section) and gross section 

properties were assumed in the longitudinal direction (consistent with an uncracked cross-section 

in compression). Similar to the 2D model used in the preliminary analysis, the bottom chord, 
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diagonal and vertical members were pin-connected at the panel points and a continuous member 

was used for the top chord.  

 

Figure 41: 3D Finite Element Model 

4.1.1. Loading 
The clear roadway width of 40 ft. for the proposed steel truss bridge requires up to three design 

lanes of traffic to be considered in the analysis (AASHTO 3.6.1.1). A multiple presence factor (m) 

is applied to the loads to account for the probability of simultaneous lane occupation by the full 

design load. To match the loading used to calculate the distribution factors with the lever rule for 

the 2D model, two loaded lanes were considered with a multiple presence factor of 1.0. The 

locations of the distributed lane load and concentrated HL93 design truck are shown in Figure 42. 

The HL-93 truck loads were applied as moving loads along the length of the bridge in the SAP2000 

model and resulted in an envelope of tension and compression forces in the steel truss. 

 

Figure 42: Location of Uniform Lane Loads and Concentrated Design Truck Loads for a Two-Lane 
Condition 
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4.1.2. Load Distribution Analysis 
A 3D model calculates controlling forces in the individual truss members by varying the locations 

of the loads and number of lanes along the continuous concrete deck.  To evaluate the magnitude 

of the tension and compression forces from the 3D analysis using the location of loads shown in 

Figure 42, forces in the individual truss members were compared with those from a 2D model 

using a distribution factor of 1.0. The ratio of the 3D to 2D forces represents the reduction in truss 

member forces achieved by distributing the applied loads to the trusses through an explicit model 

of the concrete deck, rather than relying on simplified distribution factors available for this purpose 

in AASHTO Section 4.6.2.2.2. A comparison of the maximum tension and compression forces are 

shown in Table 10.  The ratios indicate the 3D model results in reduced vertical, diagonal, and 

bottom chord forces of approximately 50%. 

Table 10: 2D Distribution Factor Versus 3D Finite Element Model Results for the Proposed Truss 
Geometry using SAP2000 

Loading 

Maximum Tension (+) / Compression (-) Forces (kips) 
2D Model 3D Model 

Vertical Diagonal Bot. Chord Vertical Diagonal Bot. Chord 

Lane -66 104 431 -37 56 273 
Truck -66 107 437 -36 52 172 

Lane + Truck -132 211 868 -73 108 445 

3D / 2D Ratio 0.55 0.51 0.51 
 
A similar comparison was made for the Swan River plate girder bridge. Calculated bending 

moments for the middle girder using AASHTOWare Bridge Design/Rating software were 

provided by MDT and the results from the 2D and 3D analyses are shown in Table 11. Note that 

the AASHTOWare software is programmed to evaluate multiple locations of the HL93 vehicle 

load, while in the analysis done above using the more general purpose SAP2000 program, only 

one position for these loads were considered.  Referring to Tables 10 and 11, the 3D / 2D ratios 

for the steel truss using the SAP2000 model with a single load configuration is comparable with a 

similar 3D to 2D analysis for the Swan River plate girder bridge using AASHTOWare and multiple 

load positions. 

Moving forward in these analyses, the decision was made to proceed with a distribution factor of 

0.75 for the proposed steel truss system.  This value is generally centered between the distribution 



 43 

factor of 0.93 calculated for the trusses using the relatively simple and typically conservative lever 

rule, and the much smaller value indicated by the more complex 3D finite element analysis (which 

did only consider a single load case).  Further, this value of 0.75 is generally centered between the 

distribution factors determined for the Swan River plate girder system (0.67 for moment and 0.87 

for shear) calculated using the AASHTO distribution factor equations in Section 4.6.2.2. Thus, the 

truss system design subsequently generated below is directly comparable with the existing plate 

girder design.   

Table 11: 2D Distribution Factor Versus 3D Finite Element Model Results for the Swan River Plate 
Girder using AASHTOWare 

Loading 
Mid-span Bending Moment (kip-ft.) 

2D Model 3D Model 
Lane 3364 1716 
Truck 4537 2428 

Lane + Truck 7901 4144 

3D / 2D Ratio 0.52 
 
4.1.3. Results 

The 2D SAP2000 model with a distribution factor of 0.75 was used to calculate truss member 

forces for two truss configurations. The first configuration (Truss 1) assumed conventional 

construction methods where the concrete deck would be cast in place after steel erection at the site. 

The second configuration (Truss 2) is an accelerated construction method where the concrete deck 

would be cast prior to shipping the prefabricated composite assembly to the bridge site. The 

location of the members designed are shown in Figure 43. The difference between the two 

configurations is the larger top chord required for the conventional construction method (Truss 1). 

For the accelerated construction scenario, it was assumed that based on the construction method, 

the self weight of the structure (truss plus deck) in service will be carried by the composite cross-

section.  Conversely, for the conventional construction scenario, assuming no shoring is used in 

the construction process, the self weight of the truss and deck is carried just by the steel truss, with 

due consideration of all incidental loads that have to be supported by the trusses during deck 

construction. The top chord design for conventional construction was controlled by the depth 

required for the bolted diagonal connection. 
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Figure 43: Location and Designation of Truss Members Designed for (a) Truss 1 using Conventional 
Construction and (b) Truss 2 using Accelerated Construction 

Calculated service-level forces from SAP2000 are shown in Table 12 and Table 13 for Truss 1 and 

Truss 2, respectively. Factored load combinations used for member and connection design are 

shown in Table 14 and Table 15, again for Truss 1 and Truss 2, respectively.  Referring to Tables 

12 and 13, as would be expected, the live load demands in individual truss members (with the 

exception of the construction live load demands) in the two truss configurations are effectively 

identical, as these demands are carried in both systems by the identical composite steel 

truss/concrete deck system.  The truss member forces are different in the two configurations for 

the demands from the dead load of the truss and deck, as this demand is carried by just the truss in 

conventional construction (Truss 1) scenario.  The member’s forces are approximately 10 percent 

lower in the Truss 2 compared to the Truss 1 scenario.  Correspondingly, and as is seen in Tables 

14 and 15, in load cases dominated by dead load demands (i.e., Strength I and Service II), design 

forces are similarly smaller in the Truss 2 compared to the Truss 1 scenario.  Selected member 

sizes and the total steel weight for the two truss configurations are shown for Truss 1 and Truss 2 

in Table 16 and Table 17, respectively.  The only difference between the member designs for the 

two trusses is for the top chord members, with heavier members being used for Truss 1.  In general, 

two different member sizes were used across the top and bottom chords in each truss, with three 

different member sizes for the diagonals.  While not reported in detail, there was relatively small 

variation in factored loads for the vertical members, and a single member size was selected for 

fabrication efficiency. The calculated mid-span deflection was 2.8 in. (L/880) using the controlling 

load from 25% of the design truck load with the design lane load (AASHTO 3.6.1.3.2) for both 

1 2 3 4 

5 6 

8 7 

9 10 11 12 

13 14 

16 15 

(a) Truss 1 

(b) Truss 2 
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configurations. Final member sizes and the total steel weight for the two truss configurations are 

shown for Truss 1 and Truss 2 in Table 16 and Table 17, respectively. 

Table 12: Calculated Service Level Forces for Truss 1 

Member 
Number 

Axial Tension (+) / Compression (-) Force (kips) 

Steel/Concrete 
Weight 

Formwork 
Weight 

Construction 
Live Load 

Design 
Lane Load 

Design 
Tandem 

Design 
Truck 

Design Truck 
(Fatigue) 

1 -128 -13 -18 -66 -50 -66 -66 
2 191 18 27 97 73 100 95 
3 129 14 18 65 60 82 77 
4 70 7 10 35 48 65 60 
5 649 68 91 330 245 335 315 
6 765 80 107 388 288 393 364 
7 -703 -73 -98 -357 -264 -361 -340 
8 -772 -81 -108 -393 -290 -397 -367 

Table 13: Calculated Service Level Forces for Truss 2 

Member 
Number 

Axial Tension (+) / Compression (-) Force (kips) 

Steel/Concrete 
Weight 

Design Lane 
Load 

Design 
Tandem 

Design 
Truck 

Design Truck 
(Fatigue) 

9 -116 -66 -50 -66 -66 
10 174 98 74 101 96 
11 117 66 62 83 79 
12 64 36 50 67 62 
13 590 331 247 337 318 
14 696 390 291 395 367 
15 -639 -358 -267 -364 -343 
16 -704 -395 -293 -400 -369 

 

Table 14: Factored Load Combinations Considered for Truss 1 

Member Number 
Axial Tension (+) / Compression (-) (kips) 

Strength I Service II Fatigue I 

1 -407 -308 -85 
2 611 463 123 
3 436 330 99 
4 272 205 78 
5 2066 1563 408 
6 2431 1839 471 
7 -2234 -1690 -440 
8 -2457 -1859 -475 
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Table 15: Factored Load Combinations Considered for Truss 2 

Member Number 
Axial Tension (+) / Compression (-) (kips) 

Strength I Service II Fatigue I 

9 -346 -264 -85 
10 522 400 125 
11 378 289 102 
12 243 185 80 
13 1761 1350 411 
14 2071 1588 475 
15 -1904 -1460 -443 
16 -2096 -1607 -477 

Table 16: 205 ft. Bolted/Welded Truss 1 Properties 

Span Deck 
Thickness 

Top Chord 
Member 

Bottom Chord 
Member 

Vertical 
Member Diagonal Member Steel 

Weight 

205 ft. 8 in. WT18x116 / 
WT18x128 

WT20x162 / 
WT18x181 W10x39 MC10x28.5 / MC10x22 / 

MC8x18.7 80 kips 

Table 17: 205 ft. Bolted/Welded Truss 2 Properties 

Span Deck 
Thickness 

Top Chord 
Member 

Bottom Chord 
Member 

Vertical 
Member Diagonal Member Steel 

Weight 

205 ft. 8 in. WT16.5x65 WT20x162 / 
WT18x181 W10x39 MC10x28.5 / MC10x22 / 

MC8x18.7 68 kips 

The steel weight for the refined accelerated construction method design is 28% less than the Swan 

River plate girder (68k versus 94k). Following the conventional construction alternative, the 

additional steel weight in the top chord results in only a 15% reduction in steel weight from the 

Swan River plate girder (80k versus 94k). 

4.2. Connection Design 

Using the factored loads shown in Table 14 and Table 15 and the refined member sizes shown in 

Table 16 and Table 17, connection designs were completed at the joints of three different truss 

panels (see Figure 44).  Limit states considered in the connection design include bolt shear, tension 

rupture, and tension yielding using loads from the Strength I load combination.  The slip critical 

connections were designed using the Service II load combination.  The connection details are 

shown in Figure 45 through Figure 47. 
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Figure 44: Connection Detail Locations 

 

Figure 45: Connection Detail A (12-bolt connection) 

 

Figure 46: Connection Detail B (8-bolt connection) 

4.3. Splice Locations 

Based on shipping regulations and construction considerations related to member weight and 

length, two different splice locations are proposed for this welded/bolted steel truss bridge. A 
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single splice at the truss mid-span was selected for a conventional concrete deck cast after erection 

of the steel trusses (Truss 1). Two splices, each located at approximately 1/3 points of the 205 ft. 

span, were selected for the accelerated construction method in which the concrete deck would be 

cast prior to erection (Truss 2). Locations of the splices for the two configurations are shown in 

Figure 48. 

 

Figure 47: Connection Detail C (6-bolt connection) 

 

Figure 48: Proposed Truss Elevation with (a) Single-Splice and (b) Two-Splice Condition 

Details for the two splice configurations are shown in Figure 49 and Figure 50. Limit states 

considered in the design of both splice connections were the same as those considered in designing 

the truss member connections (bolt shear, tension yield, and rupture).  

(a) Truss 1 

(b) Truss 2 
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Figure 49: Splice Connection Details for the Single-Splice in Truss 1 

 

Figure 50: Splice Connection Details for the Two-Splices in Truss 2 

4.4. Cost and Other Considerations 

A second cost comparison was made for the materials and fabrication of the refined bolted/welded 

steel truss to assess the impact of the bolted connections and the refined member design for the 

205 ft. span. The impact of the two splice configurations, and of the member weights and lengths 

in the two systems was assessed relative to the Swan River plate girders. General advantages and 

disadvantages of the bridge decks used for conventional and accelerated construction were 

evaluated with input from Sletten Construction (Great Falls, MT) and Dick Anderson Construction 

(Missoula, MT), two companies active in bridge construction in Montana. 

(a) Top Chord (b) Bottom Chord 

(a) Top Chord (b) Bottom Chord 
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4.4.1. Materials and Fabrication Costs 

Estimated prices for a bolted/welded steel truss and a plate girder for the Swan River crossing, 

obtained from the same sources used previously, are shown in Table 18. Costs of the splice 

connections were not included in the estimates. 

Table 18: Final Steel Price Estimates 

  Plate Girder Truss 1 Truss 2 
Allied Steel $135,000  $105,000  $94,000  

AVEVA  $95,000 $103,000  $85,000 
RTI Fabrication  $126,000 $112,000  $84,000  

Average $119,000  $107,000  $88,000  

The variation in estimates shown in Table 18 reflect many different fabrication aspects.  Allied 

Steel provided a quotation for the three alternatives that included labor estimates for the welded 

and bolted connections.  The labor rates used by AVEVA are representative of approximate 

fabrication rates for fabricators located across the country.  The estimates from RTI were based on 

an approximate cost of $1.40/lb. of steel and was the same value used for the cost estimate of the 

all-welded steel truss discussed above.  Because the three cost estimates have included different 

assumptions in their labor, materials, and fabrication process, an average value was selected to 

represent the potential cost savings for the two steel truss alternatives.  The average values shown 

in Table 18 result in an estimated materials and fabrication cost savings for Truss 1 and Truss 2 of 

10% and 26%, respectively. 

Allied Steel indicated that the bolted connections between the diagonal and bottom chords would 

be less expensive than the welded connections considered previously in the preliminary evaluation.  

Allied Steel also pointed out that camber could be built in to the bolted and welded truss 

connections during fabrication and would eliminate the need for heat curving, a practice commonly 

done for large plate girders.  Another additional cost associated with the plate girder is the required 

weld inspections for the full penetration welds between shop splices in the flange and the web.  

Inspection of the fillet welds used for the vertical truss members would not be required according 

to Allied Steel. 
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4.4.2. Shipping Considerations 

The structural elements being considered for this 205 ft. are large enough that issues could be 

encountered in shipping them to the job site.  A summary of some general shipping requirements 

in Montana (Montana Department of Transportation 2006) were provided by True North Steel 

(Billings, MT) and are shown in Table 19.  

Table 19: Shipping Guidelines for Montana 

Gross Legal Load Up to 120,000 lbs., depending on trailer/axle combination 

Flag Vehicle Requirements 
One flag vehicle for loads > 120 ft. on interstate 

One flag vehicle for loads > 110 ft. on non-interstate 
Permit Requirements Lengths over 75 ft. 

 

The weights of the steel trusses and plate girders for the single and two-splice configuration are 

shown in Table 20. An elevation view with the weight of each splice section for the plate girder 

and both truss alternatives are shown in Figure 51 with the weight of the concrete deck being 

included in the total weight of each splice section for Truss 2. 

Table 20: Length and Weight of Plate Girder and Truss Construction Alternatives 

  Member Lengths (ft.) 
Approximate Weight (kips) 

Steel Concrete Deck Total Lift 
Weight 

Plate Girder (2 splices) 62.5 / 80 / 62.5 27 / 37 / 27 - 27 / 37 / 27 
Truss 1 (conventional 
construction, 1 splice) 108 / 97 42 / 38 - 42 / 38 

Truss 2 (accelerated 
construction, 2 splices) 66.7 / 71.8 / 66.7 22 / 24 / 22 58 / 63 / 58 80 / 87 / 80 

 

For the 205 ft. bridge span under consideration, True North Steel indicated a preference to ship 

steel trusses with a single splice configuration. The maximum member length for this condition is 

approximately 108 ft. (Figure 48) and would require a permit (Table 19). The bare-steel weight of 

40 kips would enable up to 3 trusses to be delivered on a single truck without exceeding the gross 

legal load. The two-splice steel truss with a cast-in-place deck has a length of approximately 71 ft. 

and a total weight of 85 kips. A single truss with concrete deck could be shipped without exceeding 

legal load requirements or requiring a permit. 
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Figure 51: Weight of each Splice Section for the (a) Plate Girder, (b) Truss 1 and (c) Truss 2 

4.4.3. Erection 

Potential erection issues were also considered with the truss and plate girder systems through 

consultation with Sletten Construction Company (Great Falls, MT) and Dick Anderson 

Construction (Missoula, MT).  Sletten indicated that the one- and two-splice configurations for 

Truss 1 and the plate girder would be approximately equivalent if the existing bridge is available 

to use for construction.  In this case, the truss or plate girders would be connected on the ground 

using two cranes, rolled on to the existing bridge and then set in place using two cranes.  This 

construction method with Truss 2 was not recommended by Sletten because of the additional 

weight from the precast integral deck.  Without access to the existing bridge, Sletten preferred the 

single splice configuration of Truss 1 because only one temporary support structure would be 

required to set one half of the bridge while the second member is lifted by the crane to make the 

splice connection.  Potential lifting methods and rigging pick-points for the light and slender bare 

steel trusses were not evaluated. 

Dick Anderson Construction preferred the Truss 2 alternative, built using either conventional or 

accelerated construction methods.  The shorter member lengths provide easier transportation, site 

access, unloading, and staging than longer members.  Dick Anderson Construction also suggested 

additional flexibility is available with the shorter member lengths and would be suitable for 

(a) Plate Girder 

(b) Truss 1 

(c) Truss 2 
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different construction site conditions.  Advantages of Truss 2 built with accelerated construction 

methods (integral precast deck) would be faster construction time and a potential alternative to 

precast decked bulb tee systems.  Decked bulb tee systems are capable of spanning up to 160 ft, 

however at these longer lengths, transportation and site access could limit their use.  The ability to 

field splice Truss 2 with a concrete deck would create lighter members and potentially more 

efficient construction. 

The total number of bolts used in the two plate girder splices is 552 compared with only 224 bolts 

for the two splices used in Truss 2.  The fewer bolts required for resisting tension and compression 

forces (as opposed to moment and shear in the plate girder) suggests the field splice connection 

may be more efficient for the truss alternatives.  Dick Anderson Construction indicated that 

significant savings would not be realized for the smaller numbers of bolts used in a splice 

connection.  However, reducing the number of splices from two to one result in reduced 

construction costs.  Note also that a total of 560 bolts are used for the two field splices and the 

diagonal member connections for Truss 2, which is approximately the same as the number of bolts 

used in the two plate girder splices (552 bolts). 

4.5. Summary 
A 3D finite element model was created to more accurately distribute the loads to the bolted and 

welded steel trusses and associated truss members in the 205 ft. Swan River crossings being 

considered in this analysis. Based on further consideration of the load distribution to the individual 

trusses in the bridge system proposed in this study, including more refined 3D finite element 

analyses of this system, the decision was made to move forward with a distribution factor of 0.75.  

The factor is also relatively consistent with the factor calculated by AASHTO formula for the plate 

girders in the Swan River crossing, which is being used for comparative purposes in this 

investigation. 

Member forces from the refined 2D analysis were used to design selected truss members, 

connections, and splices for two scenarios, namely, use of conventional and accelerated 

construction methods.  Significantly larger top chord members were required for the conventional 

construction scenario to support construction loads during casting the deck after truss erection. 

The steel weight of the truss increased by 18% using the larger top chord members. 
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The steel weight of the bolted and welded steel trusses assuming conventional and accelerated 

construction were 15% and 28% less than the steel weight of the Swan River plate girders. Using 

an average of the materials and fabrication estimates from Allied Steel, AVEVA, and RTI 

Fabrication suggests a reduction in cost of 10% and 26% for the two construction alternatives, 

respectively. 

Single splice and two-splice erection alternatives were considered with input from Sletten 

Construction and Dick Anderson Construction.  A single-splice member is the preferable 

alternative if the existing bridge is not available for use during construction as then only one 

temporary support is required.  With access to the existing bridge during construction, both splice 

configurations would be approximately the same in construction efficiency.  Concern was 

expressed from a construction professional about the weight of Truss 2 with an integral precast 

concrete deck for use with a 205 ft. span bridge.  A potential advantage for Truss 2 with an integral 

concrete deck, however, is a potential alternative to decked bulb tee systems with the capability of 

splicing two or more members together to achieve longer spans with lighter members. 
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5. Summary and Conclusions 

Steel truss bridges are an efficient and aesthetically pleasing option for highway crossings. Their 

lightweight compared with plate girder systems make them a desirable alternative for both material 

savings and constructability. A prototype bridge structure has been proposed as a potential 

alternative for accelerated bridge construction (ABC) projects in Montana. The proposed system 

consists of a prefabricated welded steel truss topped with a composite concrete deck cast-in-place 

at the fabrication facility. These composite members are transported to the site, where they are set 

next to each other on a prepared foundation to create the bridge. This specific bridge and 

prefabricated construction technique are not well represented in the literature, and thus there is a 

need to identify potential bridge spans and traffic volumes where the proposed system is viable 

and economical. 

Preliminary designs were completed by Allied Steel for three different prefabricated steel 

truss/integral concrete deck bridge systems intended for a 108 ft. bridge over Big Dry Creek 

(Jordan, MT) and two configurations of a 148 ft. bridge over Cooper Creek (Thompson Falls, MT). 

A preliminary analysis of the 148 ft. span was completed using AASHTO’s Strength I, Fatigue I, 

and Fatigue II load combinations. Results indicate that load-induced fatigue stresses for the Fatigue 

I load combination exceed threshold values by a factor of approximately 4.0 for an infinite-life 

design. For a 75-year design life using Fatigue II load combinations, estimated fatigue stresses are 

approximately 18% higher than design requirements based on measured traffic on Hwy 200 East 

of Jordan, MT. Material and fabrication cost estimates from three sources for the 148 ft. truss and 

a comparable plate girder suggest a welded steel truss would cost approximately 5% to 20% less 

than a comparable plate girder. Based on discussions with steel fabricators and the projected 

fatigue performance of the welded connections, a new truss configuration was designed with more 

economical wide flange vertical members and bolted diagonal member connections. 

A 3D finite element model of the new truss configuration was created to more accurately distribute 

the loads to bolted and welded trusses and their attendant members using the geometry of the 205 

ft. Swan River crossing. Conventional and accelerated construction scenarios were considered in 

the design of the truss members, connections, and splices. The conventional construction scenario 

assumed a single splice at mid-span with a concrete deck cast after the truss was erected. For the 

accelerated construction scenario, the assumption was made that the truss elements with integral 
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concrete deck would bridge the span in three segments (resulting in two splices). The refined truss 

design and input from fabricating and construction professionals was used to assess the potential 

of a 205 ft. bolted/welded steel truss bridge constructed using conventional or accelerated methods.  

The final truss designs were compared with an equivalent plate girder design.   

The following conclusions were made from this investigation of prefabricated steel-truss bridge 

deck systems project: 

• The bolted member end connections meet Detail Category B requirements from AASHTO 

and have a threshold fatigue stress that is approximately 6.0 times greater than the welded 

connection Detail Category E’. The bolted connections are able to meet design 

requirements for an infinite life design using the Fatigue I load combination. 

• A 3D analysis of the steel truss using geometry from the plate girder bridge over the Swan 

River reduced the loads to the truss members by approximately 50% compared with a 2D 

model using a distribution factor of 1.0. For the bridge geometry and loading considered, 

a distribution factor of 0.75 was selected as a representative value between the conservative 

lever rule and more sophisticated 3D analysis. 

• Significantly larger top chord members were required for the conventional construction 

method to support the construction loads required for casting the deck after erection. The 

total steel weight of the truss using the larger top chord member increased by 18% (80k for 

conventional construction, 68k for accelerated (precast deck)). 

• The steel weight of the bolted and welded steel trusses assuming conventional and 

accelerated construction were 15% and 28% less than the steel weight of the Swan River 

plate girders. Materials and fabrication prices suggest a reduction in cost of up to 10% and 

26% for the two construction alternatives, respectively. 

• A single splice across the bridge span and two splices for accelerated construction methods 

were considered. Input from erection and construction professionals indicate a single splice 

is preferred if a temporary support structure is required during erection. 

Based on this investigation, the steel truss configurations for both conventional and accelerated 

construction methods are attractive alternatives for bridges using bolted and welded connections.  

More specific materials, fabrication, and construction savings from these systems could be 

identified with a completed final design and a specific construction site to consider. 



 57 

5.1 Implementation Recommendations 
The following recommendations are made based on the results of the Prefabricated Steel Truss 

Bridge Deck Systems project: 

• Discuss potential bridge crossing sites and geometries with steel fabricators and local 

contractors to receive more specific suggestions for successfully implementing a steel 

truss bridge system built using conventional or accelerated construction methods. 

• Evaluate the joint and concrete deck performance of the Maxwell Coulee bridge that 

utilized a rolled wide-flange section with an integral concrete deck. 

• Investigate alternative contracting methods for a steel truss bridge constructed with an 

integral concrete deck.  The Construction Manager/General Contractor method could 

provide a more efficient and economical delivery.  

• Complete a final design of a steel truss for a selected bridge crossing with input from 

erector, fabricator, and Maxwell Coulee observations. 

• Implement a monitoring and evaluation program, including instrumentation and remote 

data acquisition, for the constructed steel truss bridge. 
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