

Fiber-reinforced polymer wildlife crossing infrastructure

Presenter

Matthew Bell

Western Transportation Institute

FRP Wildlife Crossing Workflow

Understand FRP composites, material properties, and manufacturers

Compare FRP life-cycle costs to traditional materials

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

FRP Composites

- High strength-to-weight ratio
- Corrosion, rot, water, fire, UV, and impact resistant
- Reduced transportation and construction costs
- Little/no maintenance
- Service life \geq 100 years

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

IMPLEMENT Cost Effective Solutions

Discontinuous Fibers, Whiskers

Fabric, Braid, Etc.

Particles

FRP Manufacturing

Pultrusion molding

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

Habitat Connectivity

Cost Effective Solutions

Pultrusion Bridges

Hybrid Bridges

Uni-mold Bridges

FRP Design Goals

- Use real-world mitigation site
- Work with state DOT to establish construction plan and identify road blocks
- Design an FRP wildlife overpass that can be built along US roadways

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions **INCREASE** Habitat Connectivity

Proposed Mitigation Sites

US-97 in Siskiyou County, CA

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

US-97 Site Visit

Grass Lake Summit

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Grass Lake Summit

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Advanced Infrastructure Technologies

- FRP composite tub girders
- Bridge spans up to 120 ft

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Virtual Design Lab

- Robert Ament, Road Ecology Program Manager, Western Transportation Institute -Montana State University
- Matthew Bell, Research Engineer, Western Transportation Institute Montana State University
- Marta Brocki, Associate Director, ARC Solutions
- Renee Callahan, Executive Director, ARC Solutions
- Damon Fick, Senior Research Engineer, Western Transportation Institute Montana State University
- Manode Kodsuntie, Senior Bridge Structures Engineer, Caltrans
- Heidi Kuntz, Senior Structure Maintenance Investigations, Caltrans
- Terry McGuire, Professional Engineer, Consultant
- Robert Rock, Landscape Architect, Living Habitats
- Ryan Stiltz, Technical Liaison Engineer, Caltrans
- Marcel Huijser, Research Scientist, Western Transportation Institute Montana State University
- Sandra Jacobson, Wildlife Biologist, United States Forest Service (retired)
- Nina-Marie Lister, Ecologist and Planner, Toronto Metropolitan University
- Richard Lis, Senior Environmental Specialist, California Department of Fish and Wildlife
- Eric Ruilison, Biologist, Caltrans
- Robin Solari, Landscape Architect, Caltrans
- Jim Gutierrez, Senior Bridge Engineer, FRP Specialist, Division of Engineers Services, Caltrans
- Liz Fairbank, Center for Large Landscape Conservation
- Darin Martens, U.S. Forest Service / Wyoming Department of Transportation / FHWA

REDUCE

Wildlife Vehicle Collisions

Kerry Molz, Project Management, Caltrans

INCREASE

IMPLEMENT **Cost Effective Solutions**

MONTANA STATE UNIVERSITY

Western **Transportation** Institute

LIVING

HABITATS

Caltrans

Toronto

ARC

surrounding habitat

Virtual Design Lab: Landscaping

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE

Virtual Design Lab: Engineering

Basic

- AIT Composite tub girder
- Reinforced-concrete
- Steel/wood fence posts and jump-outs
- Large rocks for wing walls
- Concrete barriers

Enhanced

- FRP fence posts
- FRP barriers
- FRP or Epoxy-coated rebar
- Lightweight concrete
- Recycled FRP for nonstructural elements

Innovative

- AIT CT girders for root development
- Bubble decks
- FRP sound barriers
- Recycled FRP in Concrete
- 3-D Printing

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

FRP Structural Designs

35 m

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

FRP Structural Designs

Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

Habitat Connectivity

Cost Effective Solutions

FRP Structural Designs

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Life-Cycle Cost (LCC) Analysis

- Focuses on material type
- Excludes social and environmental costs
- 2.5% discount rate for future costs
- 100-year analysis
- 2019 United States Dollar

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

LCC Analysis: Superstructure

- Compares concrete, steel, and FRP
 girders
- Analysis includes girder manufacturing, transportation, construction, and maintenance
- 100 year minimum service life for FRP
- 75 year minimum service life for concrete and steel

Girder	Depth (in)	Unit Weight (lb/ft)	Total Weight (lbs)	Depth/Span Ratio
FRP Composite Tub	56	120	13,700	0.041
Prestressed Bulb Tee	54	686	78,200	0.039
Steel I-girder	54	280	32,000	0.039

LCC Analysis: Superstructure

• An FRP wildlife overpass along US-97 using the composite tub girder manufactured by AIT is estimated to cost 11% more than the prestressed concrete bridge and 30% less than the steel girder bridge over 100 years.

Wildlife Overpass Procedure	FRP	Concrete	Steel
Service life (years)	100	75	75
Manufacturing and construction costs (\$)	6,151,984	5,664,678	8,890,676
Transportation costs (\$)	250,000	50,269	77,376
Maintenance costs (\$)	68,454	136,907	308,042
LCC Total (\$)	6,470,438	5,851,854	9,276,094
LCC \$/m ² (\$/ft ²)	3,724 (346)	3,369 (313)	5,339 (496)

Wildlife Vehicle Collision Reduction and Habitat Connectivity *Pooled Fund Study, TPF-5(358)*

REDUCE Wildlife Vehicle Collisions

LCC Analysis: Fencing Elements

- Compares wood, steel, and FRP elements
- Analysis includes initial earthwork, landscaping, material and construction costs
- 35-year service life for wood
- 50-year service life for steel
- 100-year service life for FRP

Mitigation Elements	Value	
Total Wildlife Fence Length, mi (km)	18.2 (29.3)	
Fencing Length, North of Overpass, mi (km)	8.4 (13.5)	
Fencing Length, South of Overpass, mi (km)	9.9 (15.9)	
Work Zone Length, mi (km)	9.0 (15.5)	
Total Number of Fence Posts	8021	
Total Number of Jump-outs	95	
Total Number of Road Access Points	24	

LCC Analysis: Fencing Elements

 Using recycled plastic FRP for wildlife fencing, jump-outs, and road access points along US-97 is estimated to cost 38% less than wood and 28% less than steel over 100 years.

Material Used	Wildlife Fencing 100-year LCC Estimates					
	Initial Construction (\$)	Total (\$)	\$/Mile	\$/ft		
FRP	3,490,871	3,490,871	191,490	36		
Steel	2,749,158	4,855,826	266,365	50		
Wood	2,394,088	5,636,891	309,210	59		

REDUCE Wildlife Vehicle Collisions

LCC Analysis Summary

- Initial costs of FRP for wildlife crossings may be higher than traditional materials but are cheaper over time with lower maintenance costs and longer service life
- An FRP wildlife overpass has maintenance costs estimated to be 50-80% less than steel and concrete equivalents
- Using FRP for the girders of a wildlife overpass and fencing elements has an estimated life-cycle cost (\$9,961,309) about 5% less than using concrete and wood (\$10,453,856) over 100 years

REDUCE Wildlife Vehicle Collisions

Project Conclusions

- FRP has a high strength to rate ratios and are extremely resistant to corrosion and environmental deterioration
- FRP is an advanced and adaptive material that has limitless opportunities for transportation infrastructure
- An FRP hybrid wildlife crossing and recycled plastic fencing elements can be designed and built along the US road network with minimal departure from DOT standard approval processes
- FRP is economically competitive with other traditional materials used in wildlife crossings over the service life of the structure

 Bell, M., Fick, D., Ament, R., & Lister, N. M. (2020). The Use of Fiber-Reinforced Polymers in Wildlife Crossing Infrastructure. Sustainability, 12(4), 1557

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

