Long-term responses by an ecological community to highway mitigation measures

Presenter

Adam T. Ford

Western Transportation Institute

Co-authors

Marcel Huijser, PhD, Western Transportation Institute Anthony Clevenger, PhD, Western Transportation Institute

Big questions in road ecology

1). What causes spatial and temporal patterns of wildlife-vehicle collisions?

Wildlife Vehicle Collision Reduction and Habitat Connectivity *Pooled Fund Study, TPF-5(358)*

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Big questions in road ecology

1). What causes spatial and temporal patterns of wildlife-vehicle collisions?

2) What are the impacts of roads on ecosystems?

Wildlife Vehicle Collision Reduction and Habitat Connectivity *Pooled Fund Study, TPF-5(358)*

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Big questions in road ecology

1). What causes spatial and temporal patterns of wildlife-vehicle collisions?

2) What are the impacts of roads on ecosystems?

3). How do we reduce collisions while maintaining or restoring connectivity?

REDUCE Wildlife Vehicle Collisions

1). <u>Use</u>: What factors best explain species specific variation in CS use?

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

1). <u>Use</u>: What factors best explain species specific variation in CS use?

2). <u>Location</u>: Does the type (design) of CS or location matter more?

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

1). <u>Use</u>: What factors best explain species specific variation in CS use?

2). <u>Location</u>: Does the type (design) of CS or location matter more?

3). <u>Adaptation</u>: How does the importance of width change with time since construction?

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

1). <u>Use</u>: What factors best explain species specific variation in CS use?

2). <u>Location</u>: Does the type (design) of CS or location matter more?

3). <u>Adaptation</u>: How does the importance of width change with time since construction?

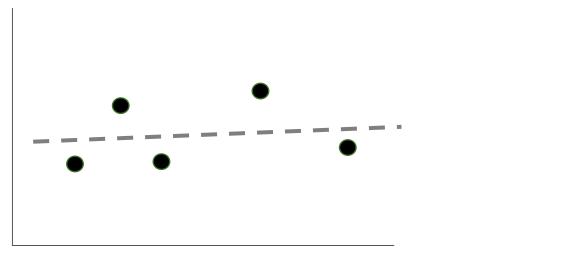
4). <u>SLOSS</u>[single large or several small]- are more or wider CS better?

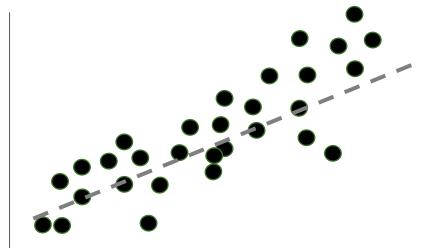
WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connec<u>tivity</u>

Challenges for <u>mitigation</u> ecology

- Mitigation tends to be:
- 1) Expensive infrastructure.
- 2) Fixed/permanent sites.
- 3) Risk averse designs.
- 4) Slow responses by wildlife.

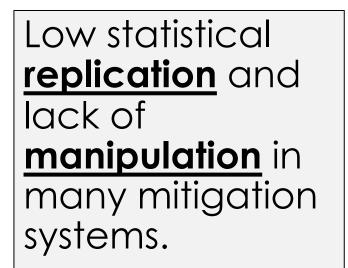

REDUCE Wildlife Vehicle Collisions

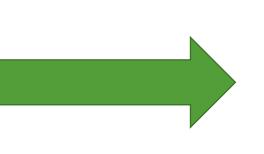


Challenges for *mitigation* ecology

- Mitigation tends to be:
- 1) Expensive infrastructure.
- 2) Fixed/permanent sites.
- 3) Risk averse designs.
- 4) Slow responses by wildlife.

There is low statistical <u>replication</u> and lack of <u>manipulation</u> in many mitigation systems.

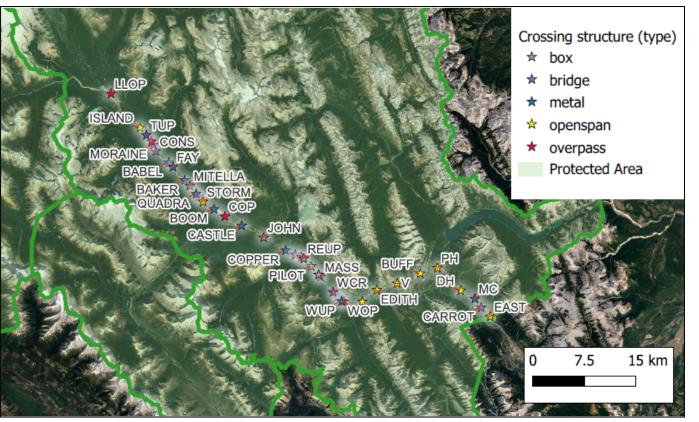



WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Mitigating problems in *mitigation* ecology

Long-term monitoring and natural variation.


Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions

INCREASE Habitat Connectivity

Wildlife Crossing Structures in Banff National Park, AB, Canada

- 40+ purpose built structures along 90 km of 4-lane highway.
- Phased construction ~20km at a time, since 1988.
- 30,000 vehicles per day.
- Monitored since 1996.

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

Wildlife Crossing Structures in Banff National Park, AB, Canada

Up to 220 monitoring months
x 9 taxa = 75240 observations
of wildlife use at crossings.

 Grizzly bear, black bear, wolves, coyote, cougar, deer spp, elk, moose.

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions **INCREASE** Habitat Connectivity

What factors best explain species-specific variation in use of crossing structures by wildlife?

Predictor variable	black bear		cougar		coyote		deer app		elk		grizzly bear		human		moose		wolf	
	В	р	В	р	В	р	В	р	В	р	В	р	В	р	В	р	В	р
Туре																		
bax															—			
bridge	0.75	0.4	3.9	<0.001	0.79	0.6	2.5	0.7	0.22	>0.9	1.0	0.3	0.05	>0.9	-0.88	0.6	1.5	0.012
metal	0.45	0.5	1.6	0.019	-0.16	0.9	-1.2	0.8	-1.0	0.7	0.04	>0.9	-1.7	0.5	-0.84	0.5	0.60	0.2
openspan	1.8	0.004	2.8	0.002	1.2	0.4	1.0	0.9	3.4	0.2	1.7	0.033	0.92	0.8	1.7	0.3	1.7	<0.001
overpass	1.8	0.002	2.0	0.013	-0.10	>0.9	-2.6	0.6	0.24	>0.9	2.5	<0.001	-2.1	0.4	0.39	0.8	1.7	<0.001
dist.for.s.	-0.09	0.5	-0.16	0.4	-0.08	0.8	-0.27	0.8	0.08	>0.9	0.05	0.8	0.44	0.6	0.49	0.2	-0.01	0.9
<u>tree 1km s</u>	0.60	0.056	0.15	0.7	-0.33	0.6	-3.1	0.3	-1.0	0.5	0.05	0.9	-1.9	0.3	-1.3	0.13	0.12	0.6
grass lkm s	-0.07	0.7	0.43	0.056	0.79	0.056	3.2	0.060	1.3	0.11	0.31	0.2	1.3	0.2	0.45	0.4	0.35	0.021
<u>shruh 1km s</u>	-0.49	0.030	-0.38	0.087	-0.16	0.8	-1.4	0.6	-0.32	0.8	-0.21	0.5	-0.68	0.6	-1.2	0.086	-0.19	0.3
elevation s	1.2	0.060	1.1	0.3	1.7	0.4	3.8	0.5	2.8	0.5	-0.32	0.7	1.6	0.8	-0.50	0.8	-1.2	0.080
dist.built.s	-0.18	0.5	0.47	0.2	0.46	0.4	1.6	0.5	0.46	0.7	0.68	0.039	-0.23	0.9	0.34	0.6	0.02	>0.9
dist.road.s	0.45	0.025	0.27	0.3	-0.23	0.7	-4.0	0.039	-0.06	>0.9	0.20	0.5	-0.43	0.7	-0.58	0.4	0.66	<0.001
rad_1000m.s	-0.07	0.8	0.14	0.5	-0.14	0.8	-2.8	0.2	-0.14	0.9	0.07	0.8	-0.21	0.9	-0.72	0.2	-0.05	0.7
dist.water.s	0.24	0.3	0.72	0.009	-0.24	0.6	-0.62	0.8	-1.0	0.3	0.23	0.4	-1.4	0.2	-0.08	0.9	0.21	0.3

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

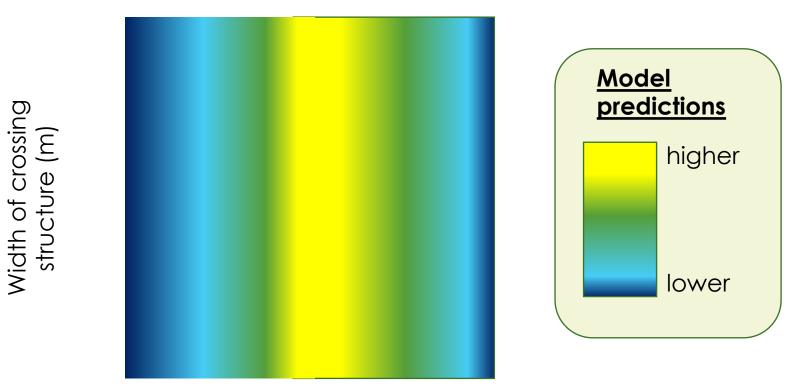
REDUCE Wildlife Vehicle Collisions

What factors best explain species-specific variation in use of crossing structures by wildlife?

Predictor variable	black bear		cougar		coyote		deer spp		elk		grizzły bear		human		moose		wolf	
	В	р	В	p	В	р	В	р	В	р	В	р	В	р	В	р	В	р
Туре																		
δοπ					—	+			- 1						- 1			
bridge	0.75	0.4	3.9	<0.001	0.79	0.6	2.5	0.7	0.22	>0.9	1.0	0.3	0.05	>0.9	-0.88	0.6	1.5	0.012
metal	0.45	0.5	1.6	0.019	-0.16	0.9	-1.2	0.8	-1.0	0.7	0.04	>0.9	-1.7	0.5	-0.84	0.5	0.60	0.2
opensipan	1.8	0.004	2.8	0.002	1.2	0.4	1.0	0.9	3.4	0.2	1.7	0.033	0.92	0.8	1.7	0.3	1.7	<0.001
overpass	1.8	0.002	2.0	0.013	-0.10	>0.9	-2.6	0.6	0.24	>0.9	2.5	<0.001	-2.1	0.4	0.39	0.8	1.7	<0.001
dist.for.s.	-0.09	0.5	-0.16	0.4	-0.08	0.8	-0.27	0.8	0.08	>0.9	0.05	0.8	0.44	0.6	0.49	0.2	-0.01	0.9
tree 1km s	0.60	0.056	0.15	0.7	-0.33	0.6	-3.1	0.3	-1.0	0.5	0.05	0.9	-1.9	0.3	-1.3	0.13	0.12	0.6
grass 1km s	-0.07	0.7	0.43	0.056	0.79	0.056	3.2	0.060	1.3	0.11	0.31	0.2	1.3	0.2	0.45	0.4	0.35	0.021
shruh 1km s	-0.49	0.030	-0.38	0.087	-0.16	0.8	-1.4	0.6	-0.32	0.8	-0.21	0.5	-0.68	0.6	-1.2	0.086	-0.19	0.3
elevation s.	1.2	0.060	1.1	0.3	1.7	0.4	3.8	0.5	2.8	0.5	-0.32	0.7	1.6	0.8	-0.50	0.8	-1.2	0.080
dist.built.s	-0.18	0.5	0.47	0.2	0.46	0.4	1.6	0.5	0.46	0.7	0.68	0.039	-0.23	0.9	0.34	0.6	0.02	>0.9
dist.road.s	0.45	0.025	0.27	0.3	-0.23	0.7	-4.0	0.039	-0.06	>0.9	0.20	0.5	-0.43	0.7	-0.58	0.4	0.66	<0.001
rad_1000m.s	-0.07	0.8	0.14	0.5	-0.14	0.8	-2.8	0.2	-0.14	0.9	0.07	0.8	-0.21	0.9	-0.72	0.2	-0.05	0.7
list water a	0.24	0.3	0.72	0.009	-0.24	0.6	-0.62	0.8	-1.0	0.3	0.23	0.4	-1.4	0.2	-0.08	0.9	0.21	0.3

- 1. Relative preference for overpasses and open span bridges by: black bear, cougar, grizzly bear, wolf
- 2. Moose, deer, and elk showed no clear relative preference for structure type.
- 3. Shrub cover tended to reduce passage rates.
- 4. Proximity to secondary roads increased use for black bears and wolves.

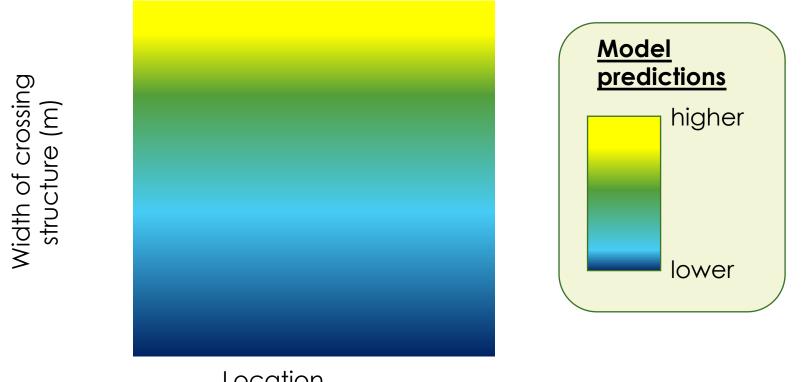
REDUCE Wildlife Vehicle Collisions



Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Hypothetical example of location > width


Location (km marker)

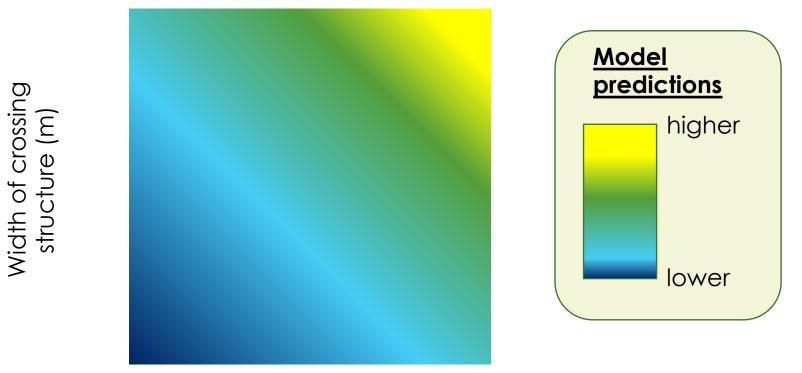
WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Hypothetical example of location < width

Location (km marker)

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

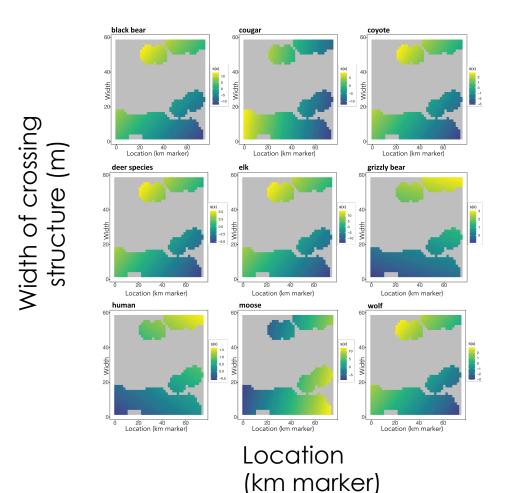

Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

Hypothetical example of location AND width

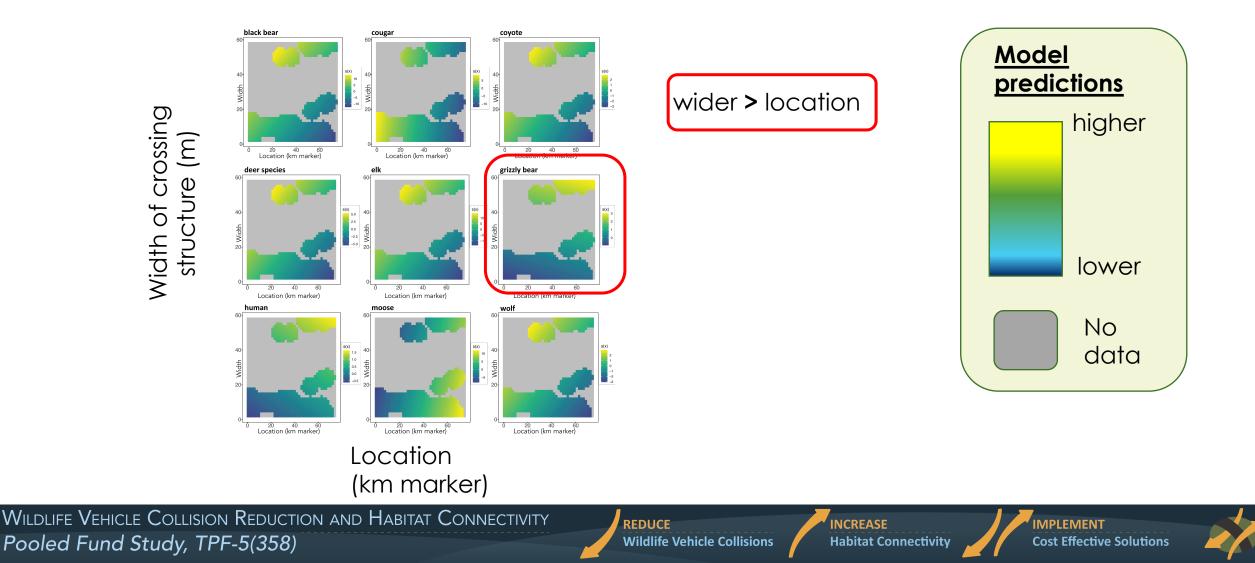
Location (km marker)

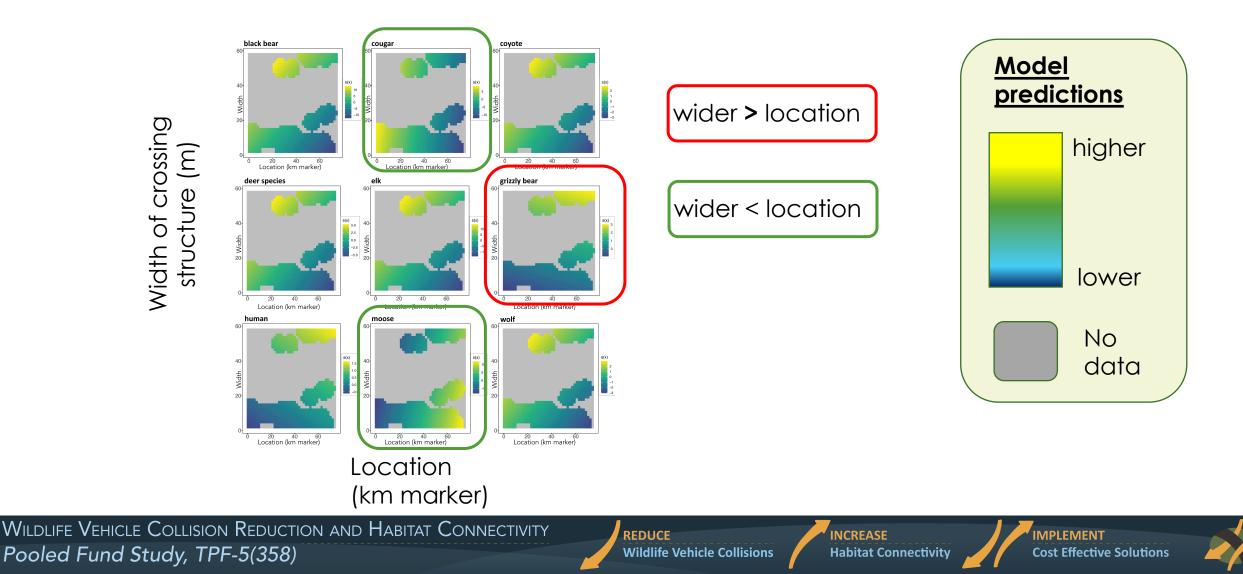

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

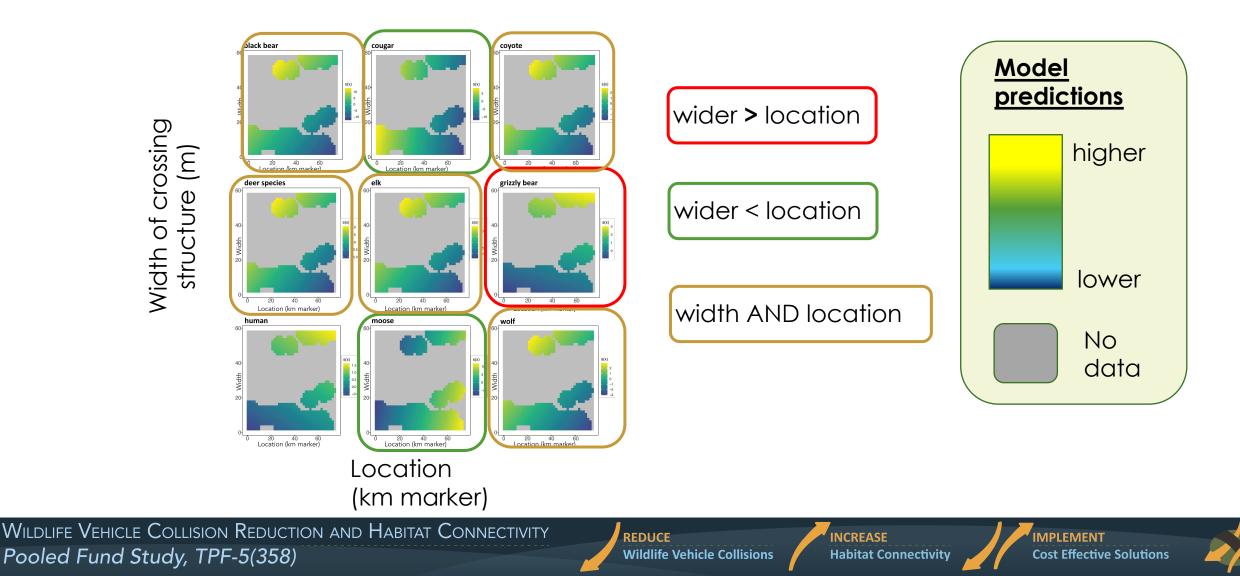
Wildlife Vehicle Collisions

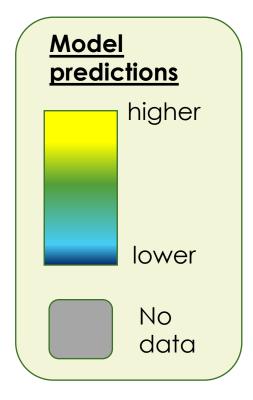
REDUCE

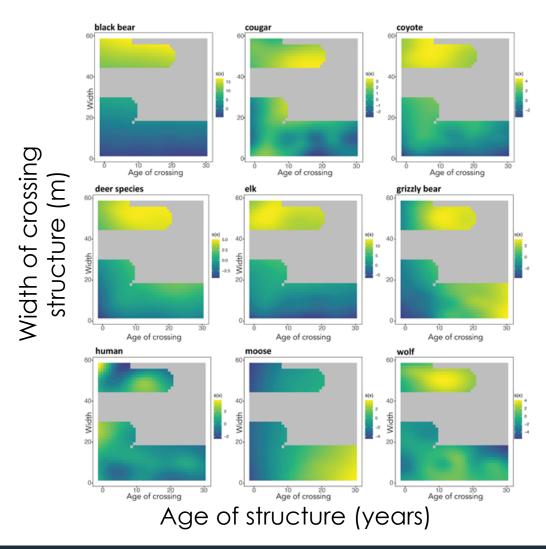
INCREASE Habitat Connectivity

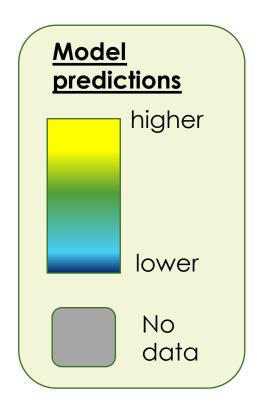



Model predictions higher lower


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

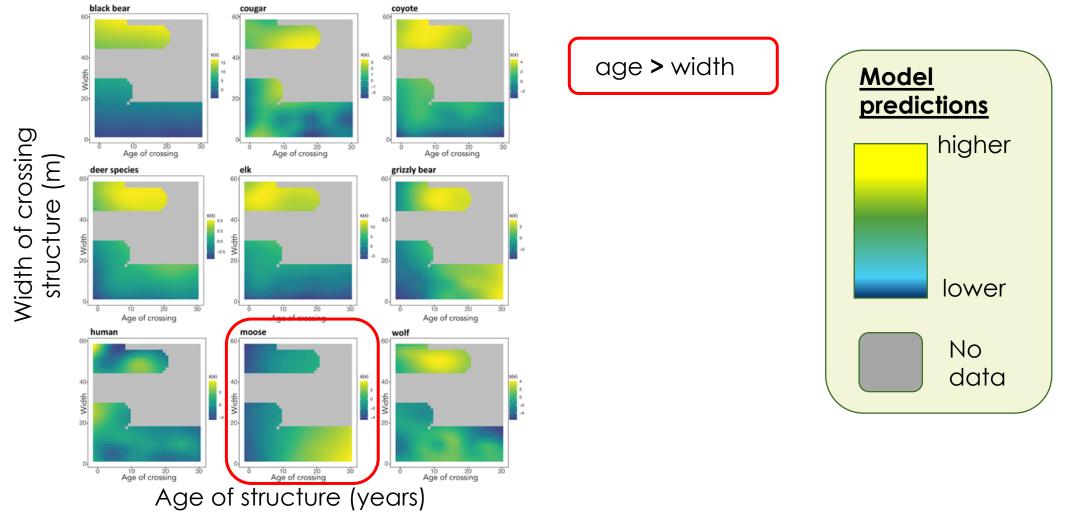

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity





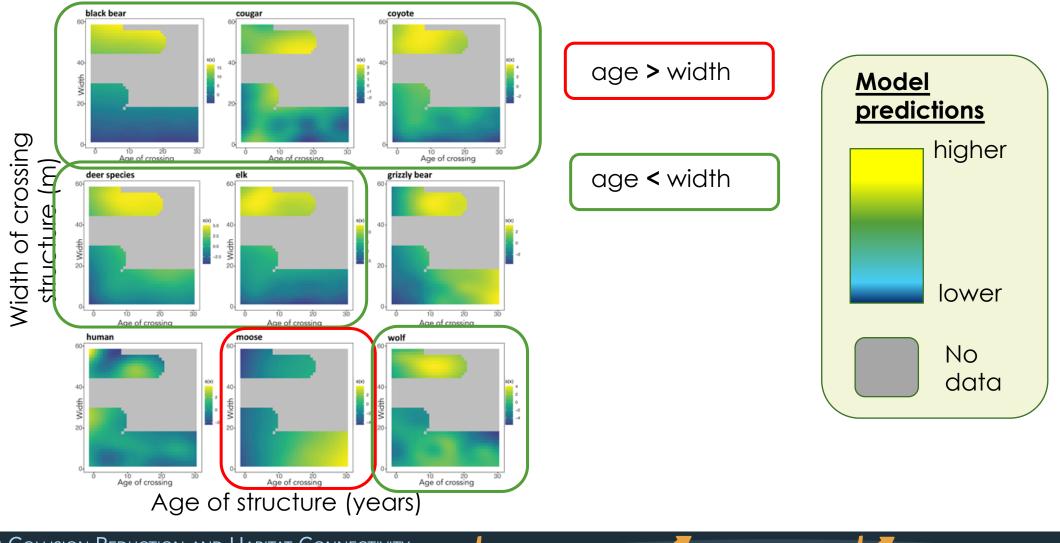
Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity



WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions **INCREASE** Habitat Connectivity


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

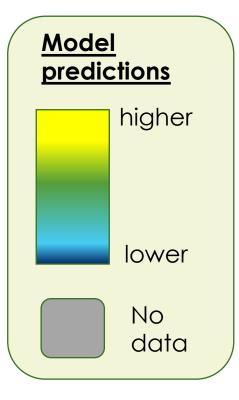
INCREASE Habitat Connectivity


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

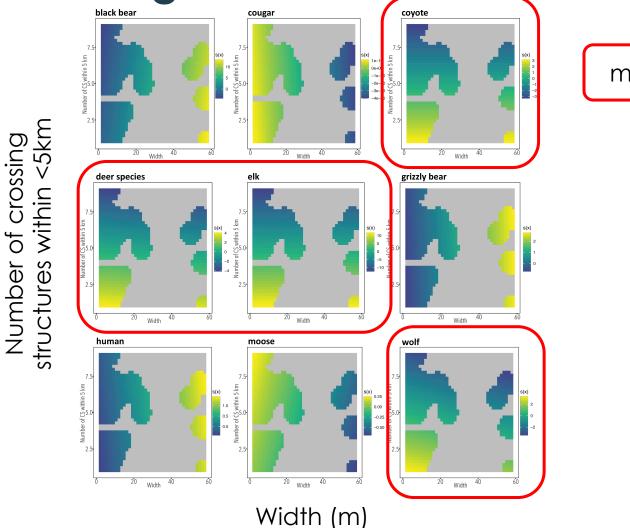

WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

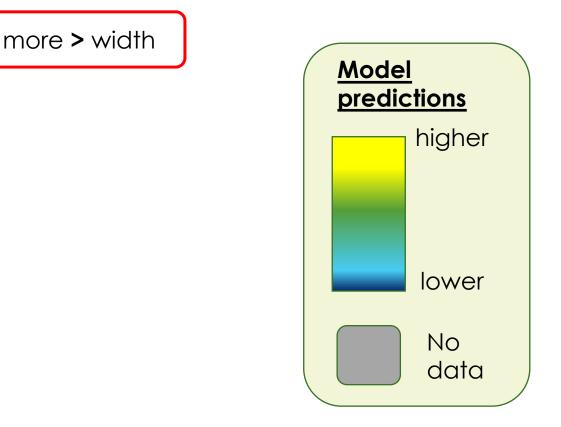
Wildlife Vehicle Collisions

REDUCE

INCREASE Habitat Connectivity

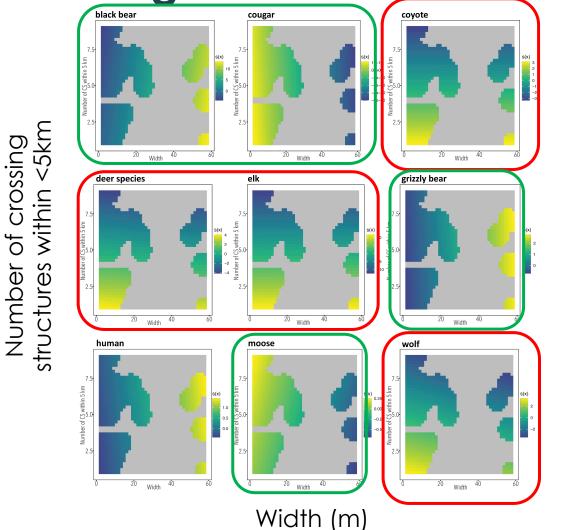
SLOSS [single large or several small]- are more or wider crossing structures better?

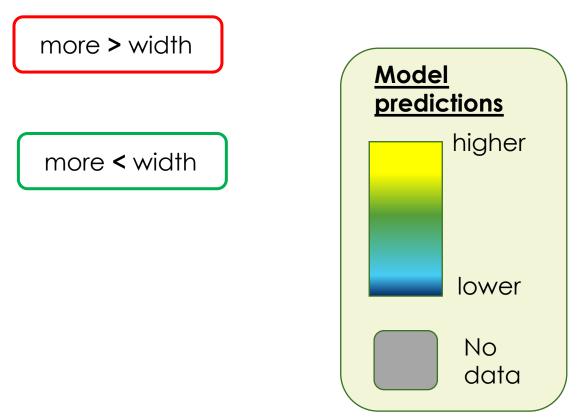

Width (m)


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

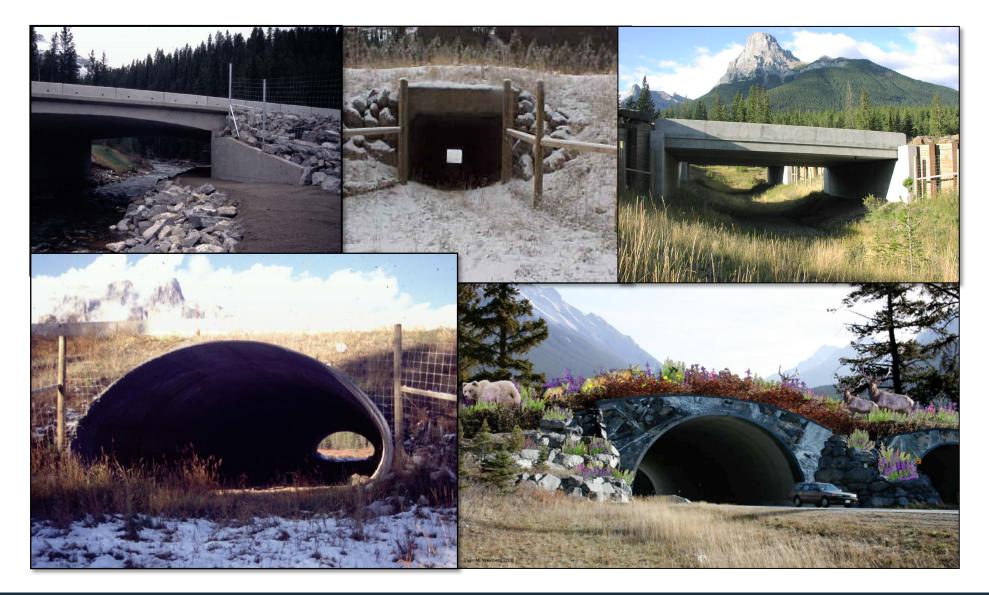
SLOSS [single large or several small]- are more or wider crossing structures better?




WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

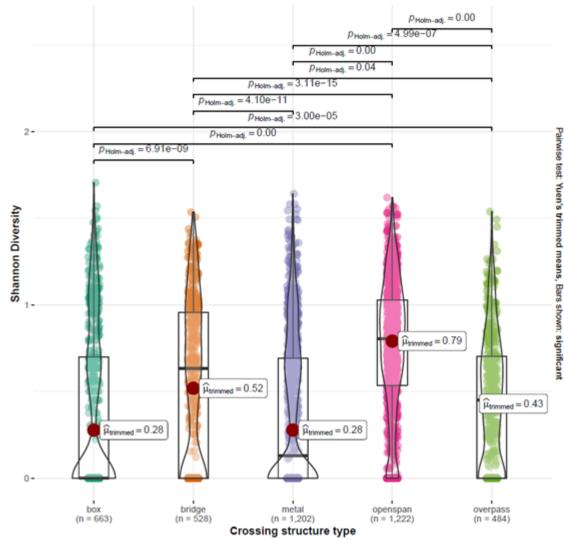
SLOSS [single large or several small]- are more or wider crossing structures better?

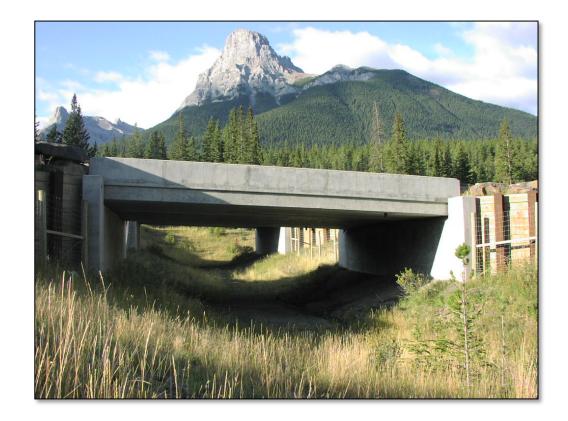


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Community-level responses to design


WILDLIFE VEHICLE COLLISION REDUCTION AND HABITAT CONNECTIVITY Pooled Fund Study, TPF-5(358)


REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Community-level responses to design

 $F_{\text{trimmed-means}}(4, 931.43) = 206.85, p = 0.00, \hat{\xi} = 0.35, Cl_{95\%}$ [0.32, 0.38], $n_{\text{obs}} = 4,099$

Wildlife Vehicle Collision Reduction and Habitat Connectivity Pooled Fund Study, TPF-5(358)

REDUCE Wildlife Vehicle Collisions INCREASE Habitat Connectivity

Conclusions

- In multi-species systems, 'diversity' is the key to making mitigation effective.
- Some species can be 'bundled' in their responses:
 - If less species-rich OR if priority species are identified, bundled responses can help manage trade-offs.

REDUCE Wildlife Vehicle Collisions

