Research to Inform Passage Spacing for Migratory Amphibians and to evaluate Efficacy and Designs for Elevated Road Segment (ERS) Passages.

Cheryl Brehme, Stephanie Barnes, Brittany Ewing, Cassie Vaughan, Michael Hobbs, Charles Tornaci, Philip Gould, Sarah Holm, Hanna Sheldon, and Robert Fisher

Western Ecological Research Center U. S. Geological Survey

Funding:
Transportation Pooled Fund Partners
U.S. Forest Service
U.S. Geological Survey
Caltrans, Department of Transportation

Objectives

- Spacing of underpasses for migratory species - Yosemite Toad?
- Effectiveness of barrier fencing (opacity).
- Effectiveness of prototype elevated road segment (ERS) passage for Yosemite toads and other small animals.
- Designs for primary roads and highways.
Yosemite Toad

- Listing status: Federally Threatened (April 29, 2014)
- Elevation Range = 6,400-11,000 feet
- Long lived: 12-15 years
- Move up to 1 km or more between terrestrial & aquatic breeding habitats
- Straight-line movement patterns not associated with drainages, roads, or other similar features
- Moves upland throughout the summer, especially during rain events

USGS

Slide & Video- Stephanie Barnes, USFS
Sierra National Forest Study Area
Mitigation Possibilities - 1?

- Barrier Systems & Wildlife Passages can reduce mortality and help to maintain connectivity
- However... can be unintended consequences...
Why Filter Effect? Fence “Give-up” Distances
California Tiger Salamander

Average movement distances along fence

Probability of Reaching Underpass based on distance from underpass
based on distance from underpass they encounter a fence

Toward
Away
Mitigation Possibilities - 1?

- Barrier Systems & Wildlife Passages can reduce mortality and help to maintain connectivity
- However... can be unintended consequences...
How about a wider crossing?

Diagram: Side view depiction of elevated road segment (rectangle with vertical lines) with barrier fencing (lines) and openings for toad passage underneath (solid rectangles); not to scale.

Prototype using road mats for construction projects on sensitive habitats

Built to meet codes and specifications for USFS, County, City Roads
(Anthony Composites- Emtek)
Installation! June 2018

Anthony Composites - EMTEK
Study Design

Movement from meadow to upland terrestrial habitat

- **Fencing:** ERTEC & Animex
 - 120 m on each side of passage

- **Camera spacing:** 20 m
 - 10m next to road

Cameras:
- HALT© Active Light Trigger & Reconyx- Time Lapse
- i3s software
Results: Individual Movement

- 42 individual YT along the fence-line
 - 27 in 2018 & only 15 from 2019-21 (drought, fire, forest clearing)
 - 24 mesh fencing, 16 solid fencing, 2 both
 - 24 subadults, 18 adults
- Average “give-up” distance = 46m (median 40m)
- Direction changes (0-4 per individual)
- 29 Individuals detected moving under ERS (estim >100)
- Adults moved farther along solid fencing (80 vs 30 m)
- No difference for subadults (40-50m)
Results: Individual Movement

Fence Movement Distance - ALL

Probability of Reaching Underpass

Spacing between passages (90% permeability) = 20 meters
Using Crossing: Yosemite Toads
Using Crossing: Other Species
Results: All Species Activity
Spatially explicit: Amphibians & Reptiles

- Pacific tree frog
- Sierra Nevada Ensatina
- Yosemite toad

- Mountain Gartersnake
- Rubber Boa
- Sierra Alligator Lizard

- Western Fence Lizard

Distance from ERS:
- Forest
- Adjacent to ERS
- Under ERS
Spatially explicit: Mammals

- American marten
- Broad-footed Mole
- Bushy-tailed Woodrat

- California Ground Squirrel
- Chipmunk
- Douglas Squirrel

- Golden-mantled Ground Squirrel
- Long-tailed Weasel
- Mountain Pocket Gopher

- Northern Flying Squirrel
- Peromyscus spp.
- Shrew

- Spotted skunk
- Vole
- Yellow-bellied Marmot

Camera location:
- Forest
- Adjacent-ERS
- ERS

Fence type:
- ERS
- Mesh
- Solid
Conclusions

- 10-20m between passages currently supported by science for migratory amphibians
- Current literature indicates wider passages are more permeable to movement of many amphibian species.
- ERS Highly Permeable to Small Animal Movement
 - Potential to better maintain connectivity over large road spans with widespread mortality.
 - Permeable to rain and light---Incorporates moisture during rain events and more natural climate conditions within passage.
 - No effect on drainage- Passage less prone to flooding- at natural grade
 - No damage to adjacent habitat- small area of impact
 - Eliminate or reduce need for barrier fencing and associated maintenance.
 - Removable
Additional Designs
Additional Designs - Goals

- Adapt ERS prototype concept to high volume roads
- Meet AASHTO standards
- Permeable to light and moisture
- Natural soil bottom
- 1 foot passage height
- Safe for vehicles and bicycles
Transverse Precast Girders
Repeating Elevated Precast Abutments with short span metal grates
Cost Considerations

<table>
<thead>
<tr>
<th>Itemized Tasks</th>
<th>Cost Range (square foot)</th>
<th>Cost Range (100 linear feet - 2 lane road)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original ERS Design Sierra NF</td>
<td></td>
<td>14’ wide = $47K</td>
<td>Removable, can be made to meet local, city, county road standards. Requires regular check-ups and maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20’ wide = $68K</td>
<td></td>
</tr>
<tr>
<td>ERS Bridge Structures</td>
<td>$250/SF - $350/SF (Structure only)</td>
<td>14’ wide = $500K</td>
<td>Includes Foundation Improvements/Preparation, Structural Concrete Supports and Span Elements, Vehicular Safety Railing, and Steel Grates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20’ wide = $700K</td>
<td></td>
</tr>
<tr>
<td>ERS Repeating Culvert and Short Span Structures</td>
<td>$250/SF - $350/SF (Structure only)</td>
<td>10 m spacing</td>
<td>Includes Raising Roadway, Traffic Handling/Staging, Drainage, Amphibian Barriers, Lighting/Signals, and Safety Improvements Structure Includes Foundation Improvements/Preparation, Structural Concrete Supports and Span Elements, Vehicular Safety Railing, and Steel Grates</td>
</tr>
<tr>
<td></td>
<td>$75/SF - $100/SF (Structure + Road Improvements with structures spaced at 10 m apart)</td>
<td>14’ wide = $150K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20’ wide = $200K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 m spacing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14’ wide = $101K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20’ wide = $136K</td>
<td></td>
</tr>
<tr>
<td>Construction Management</td>
<td>10% - 15% CON</td>
<td></td>
<td>Includes Construction Inspection and Documentation, Materials Submittal Reviews, As-Built Documentation</td>
</tr>
</tbody>
</table>
Considerations - Elevated Road Segments (ERS)

- Challenging topography
- No alteration of drainage patterns
- Property Constraints

Cost savings - high volume designs

- Stage Construction
- ABC - accelerated bridge construction 3-5 days
- Repeating culvert:
 - Smaller culvert (i.e. 2x4’ vs. 3x5’ or reduced height (Pre-cast abutment)
 - Grading and excavation outside road footprint to reduce height
 - $ Reduction - grade
Final Take-aways

- Passages systems for migratory species should consider filtering effect from barrier fencing and “give-up” distances so that the mitigation solutions both reduce mortality and increase connectivity.

- Elevated road segment designs can provide another alternative to provide high permeability to movement for migratory amphibians and other species.

- Many design options available depending upon road characteristics and site-specific considerations.