# Analysis of Chemical Dosage & Backwash Addition at Hyalite/Sourdough Water Treatment Plant

Molly Balentine, Justin Graham, Lisa McGurty

## Purpose

- Analyze influence of backwash & ACH dose on turbidity
- Determine optimal polymer dose for sludge settling.



https://www.montana.edu/marketing/about-msu/bozeman/

## MSU Jar Testing

Variation in initial turbidites

Variation in sampling methods



## Cold Room Jar Testing- Trial 1

Average Initial Turbidity 1.41 NTU

No Backwash turbidity consistently lower than 4% Backwash turbidity

Samples taken from Sample Valve



#### Room Temperature Jar Testing

Average Initial Turbidity 1.29 NTU

No Backwash turbidity lower than 4% Backwash turbidity until 5 mg/L ACH

Samples drawn off surface of jar



## Cold Room Jar Testing- Trial 2

Average Initial Turbidity6.09 NTU

No Backwash turbidity and 4% Backwash turbidity readings close, though increased SD in data

Greater addition of ACH



#### MSU & WTP Additional Testing

- Consistent average turbidity readings
- 4% Backwash displays lower turbidity at some ACH doses
- Draw-Off turbidity lower than Sample Valve turbidity
- Lower turbidity after 4 hr. settling





#### ACH Dose Recommendations

- Can't make optimal ACH dose due to the variability in data
- More consistent initial turbidity
- Longer settling time
- More consistent sampling



https://www.microdyn-nadir.com/wp-content/uploads/TSG-T-008-Troubleshooting-Jar-Testing-Procedure.pdf

# Sludge Settling

| Polymer Concentration (mg/L) | % Pass | Pass/Fail |
|------------------------------|--------|-----------|
| 0 1                          | 0      | Fail      |
| 2                            | 40     | Fail      |
| 3                            | 50     | Fail      |
| 4                            | 50     | Fail      |
| 5                            | 100    | Pass      |
| 6                            | 100    | Pass      |
| 7                            | 100    | Pass      |
| 8                            | 100    | Pass      |
| 9                            | 100    | Pass      |
| 10                           | 100    | Pass      |
| 15                           | 100    | Pass      |
| 20                           | 100    | Pass      |



## Polymer Dose Recommendation

- ➤ Optimal Dose (5 mg/L)
- Cost analysis
- > \$24.13/day, \$8,807/yr



### Recommendations for the Future

> Further testing

Test various backwash additions



https://www.indiamart.com/proddetail/industrial-sewage-water-treatment-plant-20962759930.html

# Environmental Impacts

- Would require higher doses of both ACH and polymer.
- > Takes more resources to produce chemicals.
- Higher chemical concentration in sludge cakes.
- Less water would be sent to evaporation beds.

