# Optimizing Snow Plow Routes for the City of Bozeman

Matt Crocker, John Corbett, Brian Locke, Ty Show

### **Need for Snow Removal**



### Economic Impact

- Commute times
- Deciding to stay home
- Not contributing to economy
- Increased lead time for deliveries



Safety

- Pedestrians' safety
- Driver's safety
- Emergency services
- Property damage

## **Engineering Design Process**



## Project Scope

The client is interested in optimized routes for:

- Clearing all <u>priority streets in 3-4 hours</u> when a major snow event occurs.
- All proposed solutions should not add to the risk of accidents or increase employee turnover

## Background

### City of Bozeman - Precipitation



## Population Growth



## Project Objectives

- 1. Minimize the time required for plowing high priority streets
- 2. Improve method of route communication to plow operators

### Metrics of Success

- 1. Plow time or projected plow time
- 2. Cost savings and increases
- 3. Usability of plow routes
- 4. Usability of route communication method

## **Project Constraints**

- 8 plows available
- Software should be compatible with city systems
- Limit proposed spending

### **Current State**





## Concept Design



#### **Concept Design**

- Brainstorming Solutions
- Solutions already out there
- Creativity Techniques



### Brainstorm Ideas



#### Simulation

- Discrete event simulation

### Linear Programming

- Mathematically determine optimal routes



## Discussions with Faculty

Dr. David Claudio

Associate Professor: Me chanical & Industrial Engineering

Montana State University



Dr. Sean Harris

Instructor:

Jake Jabs College of Business & Entrepreneurship

Montana State University



## Linear Programming



### Optimizing systems

- Helps solve real world problems
- Applied linear algebra
- You can optimize systems that have large amounts of variables

Ex: UPS/Amazon/airlines





### Literature Review



Highest priority to peer reviewed journal articles

### Routing methods:

- Chinese Postman Problem Variants
- Traveling Salesman Model
- Synchronized Arc Routing
- Genetic Approach to Real Time Vehicle Dispatch



### System-Level Design



#### System-Level Design

- Alternative Solution 1
- Alternative Solution 2
- Alternative Solution 3
- Evaluation of Alternatives

#### Evaluation & Selection



## Design Alternatives l



| Design Alternative          | Main Advantage                                                   |
|-----------------------------|------------------------------------------------------------------|
| Windy Postman               | Allows for change in path cost                                   |
| Traveling Salesman          | Relative simplicity                                              |
| Synchronized Arc<br>Routing | Allows for multiple plows traveling the same path simultaneously |

### Design Requirements



#### From Established Objectives

- 1. Can model multiple entities
- 2. Only requires inputs available from data
- 3. Compatible software
- 4. Applicability to the situation
- 5. Allows for weighting in the objective function
- 6. Complexity of the model



## Decision Matrix



How well do the design alternatives fit the design requirements?

| TITLE: Evaluation Matrix for Alternative Modeling Techniques  Cantington the contract of the c |                             |                  |               |               |                  |                  |                  | TOTIALS              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|---------------|---------------|------------------|------------------|------------------|----------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEIGHT                      | 0.2              | 0.3           | 0.05          | 0.2              | 0.05             | 0.2              | 1                    |  |
| Alternative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model                       | Requirement<br>1 | Requirement 2 | Requirement 3 | Requirement<br>4 | Requirement<br>5 | Requirement<br>6 | Requirement<br>Total |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Windy Postman<br>Model      | 0.4              | 1.2           | 0.15          | 1                | 0.05             | 0.6              | 3.4                  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Traveling Salesman<br>Model | 1                | 1.5           | 0.15          | 0.8              | 0.25             | 1                | 4.7                  |  |

## Design Selection





| TITLE:      | Evaluation<br>Matrix for<br>Alternative<br>Modeling<br>Techniques | / 0           | an traded to the reaching to the state of th | \$5. Supply Hold see Cal | Control the controls | Alons for     | is to the contract of the cont | Contractive branch   | TOTAL <sup>®</sup> |
|-------------|-------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|
|             | WEIGHT                                                            | 0.2           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                     | 0.2                  | 0.05          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    | <b>2</b> 50        |
| Alternative | Model                                                             | Requirement 1 | Requirement 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requirement 3            | Requirement 4        | Requirement 5 | Requirement 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requirement<br>Total |                    |
| 1           | Windy Postman Model                                               | 0.3           | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                     | 0.8                  | 0.05          | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.95                 |                    |
| 2           | Traveling Salesman<br>Model                                       | 1             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15                     | 0.8                  | 0.25          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7                  |                    |
| 3           | Synchronized Arc<br>Routing Model                                 | 1             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15                     | 1                    | 0.2           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.85                 |                    |

## Design Selection



## Simplest Case



```
t_{ij} = \begin{cases} 0 & \text{if the plow does not travel from node i to node } j \\ 1 & \text{if the plow does travel from node i to node } j \\ c_{ij} = cost \text{ to travel from node i to node } j \\ \text{Cost matrix} \end{cases}
\text{Decision variable} \qquad \qquad Min \ z = \sum_{i} \sum_{j} t_{ij} * c_{ij} \\ \text{In = Out}
```

$$0 = \sum_{i} \sum_{j} t_{ij}$$
 representing arcs in  $-t_{ij}$  representing arcs out  $\forall$  nodes  $\forall$  nodes  $\exists t_{ij} \forall$  arcs that require plowing

### **Adding Turn Penalties**





If  $t_{12} = 1$  and  $t_{24} = 1$ , or  $t_{32} = 1$  and  $t_{24} = 1$ , then the plow was traveling on road 123 and turned onto road 24.

If  $t_{42} = 1$  and  $t_{21} = 1$ , or  $t_{42} = 1$  and  $t_{23} = 1$ , then the plow was traveling on road 24 and turned onto road 123.

... + 
$$c_t^* (t_{12}^* t_{24} + t_{32}^* t_{24} + t_{42}^* t_{21} + t_{42}^* t_{23})$$

### **Adding Turn Penalties**



$$t_{ijkl} = \begin{cases} 0 & \textit{if plow } l \textit{ does not travel from node } i \textit{ to node } j \\ 1 & \textit{if plow } l \textit{ does travel from node } i \textit{ to node } j \\ c_{ij} = cost \textit{ to travel from node } i \textit{ to node } j \\ cost \textit{ matrix} & c_t = cost \textit{ to turn} \\ Turn \textit{ penalty} & Time \\ Turn \textit{ penalty} & Time \\ In = Out & In = Out \\ 0 = \sum_i \sum_j \sum_k t_{ijkl} \textit{ representing arcs in } -t_{ijkl} \textit{ representing arcs out } \forall \textit{ nodes } \forall \textit{ l} \\ viscosity & visco$$

### Final Model Formulation

$$t_{ijkl} = \begin{cases} 0 & \text{if plow $l$ does not travel from node $i$ to node $j$} \\ 1 & \text{if plow $l$ does travel from node $i$ to node $j$} \\ c_{ij} = cost to travel from node $i$ to node $j$} \\ c_t = cost to turn \end{cases}$$

$$Min z = \left(\sum_{i} \sum_{j} \sum_{k} \sum_{l} t_{ijkl} * c_{ij}\right) + c_{t} * (turn \ penalty \ terms)$$

$$\begin{aligned} \mathit{Min} \ z &= \left(\sum_{i}\sum_{j}\sum_{k}\sum_{l}t_{ijkl}*c_{ij}\right) + c_{t}*\left(\mathit{turn}\ \mathit{penalty}\ \mathit{terms}\right) \\ &0 &= \sum_{i}\sum_{j}\sum_{g}\sum_{k}t_{ijkl} - t_{jgkl} \quad \forall \ \mathit{nodes} \ \forall \ \mathit{l} \\ &0 &\geq \sum_{i}\sum_{j}t_{ijkl} - \sum_{j}\sum_{g}t_{jgkl} \quad \forall \ \mathit{j} \ \forall \ \mathit{k} \ \forall \ \mathit{l} \\ & \text{\# of required passes by plows} \leq \sum_{k}\sum_{l}t_{ijkl} \quad \forall \ \mathit{arcs} \\ & \text{\# of required passes by graders} \leq \sum_{k}\sum_{l}t_{ijk1} + t_{ijk2} \quad \forall \ \mathit{arcs} \\ & \text{\# of hours allowable per driver} \geq \sum_{i}\sum_{j}\sum_{k}t_{ijkl}*c_{ij} \quad \forall \ \mathit{l} \\ &1 &= \sum_{i}t_{270j1l} \quad \forall \ \mathit{l} \end{aligned}$$

### Running the Model

Client Need Concept Design System-Level Design Detail Design

- For networks of this size, the number of variables will cause problems
- Compromises had to be made to run the model in under 8 hours with 3 Gb of RAM
- The routes obtained as output are not optimal solutions, but are good solutions

| Job#    | Category | Solver | Input | Submitted           | Elapsed | Status | Result      |
|---------|----------|--------|-------|---------------------|---------|--------|-------------|
| 3137103 | milp     | CPLEX  | AMPL  | 2020-05-02 05:41:34 | 7:30:16 | Done   | <b>&gt;</b> |
| 3137102 | milp     | CPLEX  | AMPL  | 2020-05-02 05:41:33 | 7:30:17 | Done   | <b>&gt;</b> |
| 3137101 | milp     | CPLEX  | AMPL  | 2020-05-02 05:41:31 | 2:20:17 | Done   | -           |
| 3137100 | milp     | CPLEX  | AMPL  | 2020-05-02 05:41:31 | 1:00:50 | Done   | <b>&gt;</b> |
| 3137065 | milp     | CPLEX  | AMPL  | 2020-05-02 04:22:39 | 0:45:07 | Done   | -           |
| 3137063 | milp     | CPLEX  | AMPL  | 2020-05-02 04:19:23 | 0:00:05 | Done   | -           |
| 3137062 | milp     | CPLEX  | AMPL  | 2020-05-02 04:14:27 | 7:30:03 | Done   | -           |
| 3137061 | milp     | CPLEX  | AMPL  | 2020-05-02 04:14:26 | 0:00:02 | Done   | -           |
| 3137057 | milp     | CPLEX  | AMPL  | 2020-05-02 04:09:31 | 7:30:03 | Done   | -           |
| 3137056 | milp     | CPLEX  | AMPL  | 2020-05-02 04:09:29 | 0:00:02 | Done   | <b>b</b>    |
| 3137055 | milp     | CPLEX  | AMPL  | 2020-05-02 04:05:21 | 7:30:03 | Done   | <b>b</b>    |
| 3137054 | milp     | CPLEX  | AMPL  | 2020-05-02 04:05:19 | 0:00:02 | Done   | >           |
| 3137050 | milp     | CPLEX  | AMPL  | 2020-05-02 03:56:13 | 7:30:07 | Done   | -           |
| 3137049 | milp     | CPLEX  | AMPL  | 2020-05-02 03:56:11 | 0:00:07 | Done   | -           |
| 3137048 | milp     | CPLEX  | AMPL  | 2020-05-02 03:56:10 | 7:30:09 | Done   | -           |
| 137047  | milp     | CPLEX  | AMPL  | 2020-05-02 03:56:09 | 0:00:09 | Done   | -           |
| 137001  | milp     | CPLEX  | AMPL  | 2020-05-02 02:35:05 | 7:30:13 | Done   | -           |
| 137000  | milp     | CPLEX  | AMPL  | 2020-05-02 02:35:03 | 7:30:16 | Done   | -           |
| 3136990 | milp     | CPLEX  | AMPL  | 2020-05-02 02:32:26 | 7:30:12 | Done   | 2           |
| 3136989 | milp     | CPLEX  | AMPL  | 2020-05-02 02:32:25 | 7:30:12 | Done   | -           |
| 3136646 | milp     | CPLEX  | AMPL  | 2020-05-01 20:30:14 | 7:30:24 | Done   | -           |
| 3136645 | milp     | CPLEX  | AMPL  | 2020-05-01 20:30:13 | 7:30:28 | Done   | -           |
| 3136644 | milp     | CPLEX  | AMPL  | 2020-05-01 20:30:11 | 7:30:26 | Done   | -           |
| 3136643 | milp     | CPLEX  | AMPL  | 2020-05-01 20:30:10 | 7:30:08 | Done   | -           |
| 136507  | milp     | CPLEX  | AMPL  | 2020-05-01 17:37:48 | 0:06:57 | Done   | -           |
| 136506  | milp     | CPLEX  | AMPL  | 2020-05-01 17:37:46 | 7:30:11 | Done   | 5           |
| 136457  | milp     | CPLEX  | AMPL  | 2020-05-01 17:13:14 | 0:33:31 | Done   | <b>b</b>    |
| 136456  | milp     | CPLEX  | AMPL  | 2020-05-01 17:13:12 | 7:30:08 | Done   | -           |
| 136425  | milp     | CPLEX  | AMPL  | 2020-05-01 17:02:54 | 1:18:00 | Done   | -           |
| 136424  | milp     | CPLEX  | AMPL  | 2020-05-01 17:02:53 | 0:06:58 | Done   | <b>b</b>    |
| 135101  | milp     | CPLEX  | AMPL  | 2020-05-01 11:05:38 | 7:30:22 | Done   | 5           |
| 135100  | milp     | CPLEX  | AMPL  | 2020-05-01 11:05:36 | 7:30:22 | Done   | <b>b</b>    |
| 135099  | milp     | CPLEX  | AMPL  | 2020-05-01 11:05:35 | 7:30:22 | Done   | <b>b</b>    |
| 135098  | milp     | CPLEX  | AMPL  | 2020-05-01 11:05:33 | 7:30:13 | Done   | <b>b</b>    |
| 135078  | milp     | CPLEX  | AMPL  | 2020-05-01 10:59:56 | 0:00:10 | Done   | <b>b</b>    |
| 135077  | milp     | CPLEX  | AMPL  | 2020-05-01 10:59:54 | 0:00:12 | Done   | 5           |
| 135076  | milp     | CPLEX  | AMPL  | 2020-05-01 10:59:51 | 0:00:13 | Done   | -           |
| 3135075 | milp     | CPLEX  | AMPI  | 2020-05-01 10:59:50 | 0:00:13 | Done   | P=          |

### Final Optimized Routes

Assuming the longest current route takes 5 hours, the team provided routes that improved on the current routes by approximately 18 minutes or a 6% improvement.



### **Route Communication Methods**

Heads Up Displays

GPS units w/ Audio

Phone Navigation

Paper Maps









### **Evaluation of Methods**

#### Route Communication Method Goals:

- Increase the usability of snow plow route communication
- Create countermeasures for line of sight distractions due to current map method
- Decrease distractions due to route communication
- Increase amount of standard operating procedures (SOP's) for method

#### Route Communication Method Constraints:

- The countermeasures should be relatively easy to install
- The countermeasures should be low cost
- The new system should stay in line with the overall project goals
- The new system should not make the job harder or less safe

#### Stakeholder Analysis

Priority Weighting of Design Requirements

### **Priority Weighting of Design Requirements**



### Recommendations

GPS with Audio Directions

Cost around \$99.99 brand new

Refurbished units are priced in the \$60 to \$80 range.



### Route Communication Implementation Plan

Guide to transition from paper maps to GPS units with Audio directions

Plow Driver Training Session

Test Run of Routes

| Activity |                                                      | Start Date | Finish Date | Status/Comments |
|----------|------------------------------------------------------|------------|-------------|-----------------|
| 1        | Purchase 8 GPS units                                 |            |             |                 |
| 2        | Confirm software is up to date                       |            |             |                 |
| 3        | Load Optimized Snow Plow Routes onto devices         |            |             |                 |
| 4        | Confirm all trucks have working 12 volt power outlet |            | 45          |                 |
| 5        | Fix any faulty 12 volt power outlets                 |            | 2           |                 |
| 6        | Schedule Driver GPS training session                 |            | -           |                 |
| 7        | Plow Driver GPS training session                     |            | - Are       |                 |
| 8        | Provide each truck with mounting solution            |            | 8           | 1               |
| 9        | Drivers mount/install GPS with suction cup to        |            | 2           |                 |
| 10       | Run power cable from GPS unit to 12 volt supply      |            |             |                 |
| 11       | Confirm voice navigation is enabled                  |            | 10          |                 |
| 12       | Distribute Plow Route assignment to drivers          |            |             | 1               |
| 13       | Driver select assigned plow route in GPS unit        |            | 2           |                 |
| 14       | Test run plow routes with GPS visual and audio       |            |             |                 |

## Conclusion and Takeaways

- The route optimization provided routes that improved on the current routes by approximately 18 minutes or a 6% improvement.
- The use of GPS navigation units with turn-by-turn audio instructions can improve plow operator safety and reduce employee turnover

## Q & A

### References

Another One https://giphy.com/gifs/dj-khaled-GV3aYiEP8qbao Billy http://memes.ucoz.com/\_nw/13/29922471.jpg

Brainstorm https://www.merriam-webster.com/words-at-play/definition-of-brainstorming

Concept Design http://www.kaavishinterior.com/ser-concept-designs.html

UPS https://sustainability.ups.com/wp-content/themes/ups-cr/assets/img/video-thumbs/ups-package-design-homepage.jpg

Right Choice https://www.shutterstock.com/search/right+choice

Iteration https://www.interaction-design.org/literature/article/ux-basics-and-the-entrepreneurial-iteration

Precipitation https://usclimatedata.com/climate/bozeman/montana/united-states/usmt0040

Bozeman http://www.montana.edu/marketing/about-msu/images/kg061114-17.jpg

Snow Driving https://www.idrivesafely.com/wp-content/uploads/2015/01/DRIVING\_IN\_THE\_SNOW.jpg

Car Crash https://i.ytimg.com/vi/vgkOyvabTNE/maxresdefault.jpg

Amazon https://vietnguyen.info/wp-content/uploads/2016/09/amazon-logo.png